首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present plasmonic optical trapping of micron-sized particles in biologically relevant buffer media with varying ionic strength. The media consist of 3 cell-growth solutions and 2 buffers and are specifically chosen due to their widespread use and applicability to breast-cancer and angiogenesis studies. High-precision rheological measurements on the buffer media reveal that, in all cases excluding the 8.0 pH Stain medium, the fluids exhibit Newtonian behavior, thereby enabling straightforward measurements of optical trap stiffness from power-spectral particle displacement data. Using stiffness as a trapping performance metric, we find that for all media under consideration the plasmonic nanotweezers generate optical forces 3–4x a conventional optical trap. Further, plasmonic trap stiffness values are comparable to those of an identical water-only system, indicating that the performance of a plasmonic nanotweezer is not degraded by the biological media. These results pave the way for future biological applications utilizing plasmonic optical traps.  相似文献   

2.
We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle. The counter-propagating optical trap measurement (COTM) system exploits the capability of optical traps to measure pico-Newton forces for microparticles' refractive index and size characterization. Different from the current best technique for microparticles' refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap technique works with any transparent fluid and enables single particle analysis without the use of biological markers. A ray-optics model is used to explore the physical operation of the COTM system, predict system performance and aid system design. Experiments demonstrate the accuracy of refractive index measurement of Deltan=0.013 and size measurement of 3% of diameter with 2% standard deviation. Present performance is instrumentation limited, and a potential improvement by more than two orders of magnitude can be expected in the future. With further development in parallelism and miniaturization, the system offers advantages for cell manipulation and bioanalysis compatible with lab-on-a-chip systems.  相似文献   

3.
细胞表面电荷的光镊测量方法及应用研究   总被引:1,自引:0,他引:1  
分析了细胞表面电荷测量的意义、方法和现状,提出采用光镊技术测量细胞表面电荷的方法,介绍了实现该方法的系统构成和检测原理。在电场力的作用下,处于悬浮液中的带电细胞产生电泳。在外加电场力为零时利用激光的陷阱力捕获该细胞,然后施加并逐渐加大外加电场力,直到细胞刚好逃脱光阱力的束缚时的瞬间光阱力,理论上就是细胞所带电荷在电场中产生的库仑力与粘滞力之和。  相似文献   

4.
Optical tweezers are widely used for experimental investigation of linear molecular motors. The rates and force dependence of steps in the mechanochemical cycle of linear motors have been probed giving detailed insight into motor mechanisms. With similar goals in mind for rotary molecular motors we present here an optical trapping system designed as an angle clamp to study the bacterial flagellar motor and F(1)-ATPase. The trap position was controlled by a digital signal processing board and a host computer via acousto-optic deflectors, the motor position via a three-dimensional piezoelectric stage and the motor angle using a pair of polystyrene beads as a handle for the optical trap. Bead-pair angles were detected using back focal plane interferometry with a resolution of up to 1 degrees , and controlled using a feedback algorithm with a precision of up to 2 degrees and a bandwidth of up to 1.6 kHz. Details of the optical trap, algorithm, and alignment procedures are given. Preliminary data showing angular control of F(1)-ATPase and angular and speed control of the bacterial flagellar motor are presented.  相似文献   

5.
We combined a single-beam gradient optical trap with a high-resolution photodiode position detector to show that an optical trap can be used to make quantitative measurements of nanometer displacements and piconewton forces with millisecond resolution. When an external force is applied to a micron-sized bead held by an optical trap, the bead is displaced from the center of the trap by an amount proportional to the applied force. When the applied force is changed rapidly, the rise time of the displacement is on the millisecond time scale, and thus a trapped bead can be used as a force transducer. The performance can be enhanced by a feedback circuit so that the position of the trap moves by means of acousto-optic modulators to exert a force equal and opposite to the external force applied to the bead. In this case the position of the trap can be used to measure the applied force. We consider parameters of the trapped bead such as stiffness and response time as a function of bead diameter and laser beam power and compare the results with recent ray-optic calculations.  相似文献   

6.
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.  相似文献   

7.
We have compared two different laser-induced optical light traps for their utility in moving organelles within living animal cells and walled fungal cells. The first trap employed a continuous wave neodymium-yttrium aluminum garnet (Nd-YAG) laser at a wavelength of 1.06 micron. A second trap was constructed using a titanium-sapphire laser tunable from 700 to 1000 nm. With the latter trap we were able to achieve much stronger traps with less laser power and without damage to either mitochondria or spindles. Chromosomes and nuclei were easily displaced, nucleoli were separated and moved far away from interphase nuclei, and Woronin bodies were removed from septa. In comparison, these manipulations were not possible with the Nd-YAG laser-induced trap. The optical force trap induced by the tunable titanium-sapphire laser should find wide application in experimental cell biology because the wavelength can be selected for maximization of force production and minimization of energy absorption which leads to unwanted cell damage.  相似文献   

8.
Optical traps (tweezers) are beginning to be used with increasing efficacy in diverse studies in the biological and biomedical sciences. We report here results of a systematic study aimed at enhancing the efficiency with which dielectric (transparent) materials can be optically trapped. Specifically, we investigate how truncation of the incident laser beam affects the strength of an optical trap in the presence of a circular aperture. Apertures of various sizes have been used by us to alter the beam radius, thereby changing the effective numerical aperture and intensity profile. We observe significant enhancement of the radial and axial trap stiffness when an aperture is used to truncate the beam compared to when no aperture was used, keeping incident laser power constant. Enhancement in trap stiffness persists even when the beam intensity profile is modulated. The possibility of applying truncation to multiple traps is explored; to this end a wire mesh is utilized to produce multiple trapping that also alters the effective numerical aperture. The use of a mesh leads to reduction in trap stiffness compared to the case when no wire mesh is used. Our findings lead to a simple-to-implement and inexpensive method of significantly enhancing optical trapping efficiency under a wide range of circumstances.  相似文献   

9.
For the direct investigation of intranuclear dynamics in living cells, extremely deformed nuclei of basipetally centrifuged protonemal cells of the fernAdiantum capillus-veneris were manipulated by the laser trap and the laser scalpel. Whereas the nucleolus was tightly fixed at the central position inside the non-centrifuged nucleus and proved to be immovable by the optical trap, it could easily be trapped and moved towards three directions inside the bubble-like terminal widening of the basal thread-like extension of centrifuged nuclei. Due to the connection of the nucleolus to the chromatin inside the nuclear thread (NT), moving was not possible against the direction of the nuclear apical main body. Nucleoli in recovered nuclei were again immovable, thus indicating the presence of a dynamic nucleolar anchoring system inside the nucleus. When the nucleolus in the bubble was arrested during the thread shortening process by the optical trap, the acropetal movement of the bubble continued. Probably due to dragging forces, some nucleoli became stretched, and a thick strand of a still unknown composition stretched between the nucleolus and the insertion site of the shortening NT. To assess whether the shrinking of the nuclear envelope (NE) and the shortening of the chromatin inside the NT were independent processes, the chromatin above the bubble was cut inside the NT by the laser scalpel. After severance, a gap between the nucleolus and the end of the chromatin strand in the NT indicated the shortening of the chromatin inside the NT. From these findings it was concluded that a shortening force was existing in the chromatin of the NT and that probably no physical link existed between the chromatin and the NE.  相似文献   

10.
Variation in environmental and physical factors within food processing facilities can influence both the distribution of stored-product pests and trapping efficiency. Data from a long-term Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) monitoring program was used to evaluate spatial variation in captures among trap locations and to determine relationships with environmental and physical variables. From the complete monitoring data set, different subsets were created for the cool and warm seasons, and period of time when environmental and physical factors were measured (2009-2010), with all data sets showing significant differences among trap locations in terms of beetle captures and proportion of time that traps exceeded 2.5 beetles per trap per monitoring period. There was also considerable temporal variation in distribution among the different levels of the mill. Among the environmental and physical variables measured, mean temperature and flour dust accumulation showed the most significant positive relationships with variation of beetle captures at trap locations. More beetles were captured in traps located in close proximity to milling equipment. Presence of equipment near traps was also associated with an increase in flour dust accumulation and temperature. Overall the environmental and physical factors seemed to have a limited influence on variation in captures among trap locations, with temporal variation in distribution perhaps overwhelming potential influences of local trap conditions.  相似文献   

11.
Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements.  相似文献   

12.
Using Optics to Measure Biological Forces and Mechanics   总被引:1,自引:0,他引:1  
Spanning all size levels, regulating biological forces and transport are fundamental life processes. Used by various investigators over the last dozen years, optical techniques offer unique advantages for studying biological forces. The most mature of these techniques, optical tweezers, or the single-beam optical trap, is commercially available and is used by numerous investigators. Although technical innovations have improved the versatility of optical tweezers, simple optical tweezers continue to provide insights into cell biology. Two new, promising optical technologies, laser-tracking microrheology and the optical stretcher, allow mechanical measurements that are not possible with optical tweezers. Here, I review these various optical technologies and their roles in understanding mechanical forces in cell biology.  相似文献   

13.
To study the potential use of optical forces to manipulate chromosome movement, we have used a Nd:YAG laser at a wavelength of 1.06 microns focused into a phase contrast microscope. Metaphase and anaphase chromosomes were exposed while being monitored by video microscopy. The results indicated that when optical forces were applied to late-moving metaphase chromosomes on the side closest to the nearest spindle pole, the trapped chromosomes initiated movement to the metaphase plate. The chromosome velocities were two to eight times the normal rate depending on the chromosome size, geometry, and trapping site. At the initiation of anaphase, a pair of chromatids could be held by the optical trap and kept motionless throughout anaphase while the other pairs of chromatids separated and moved to opposite spindle poles. As a result, the trapped chromosome either was incorporated into one of the daughter cells or was lost in the cleavage furrow, or the two chromatids eventually separated and moved to their respective daughter cells. If the trap was removed at the beginning of anaphase B, the chromosome moved back to the poles. Our experiments demonstrate that the laser-induced optical force trap is a potential new technique to study noninvasively the mitotic spindle of living cells.  相似文献   

14.
本文综合报道了作者近数年来以PTK_2细胞为实验材料,用Nd:YAG激光器所发射的1.06微米波长和氩离子泵浦Titanium-Sapphire激光所发射的700—760毫微米波长的连续激光微光束作为光捕捉在显微操作染色体方面的一些主要实验结果。所得结果表明光捕捉可诱发中期细胞的落后染色体向中期板加速移动,抓住后期细胞的一对染色体,使其停留在中期板保持静止不动,而其余的染色体对照常进行染色单体的分离並移向两极,在后期一直用光捕捉抓住的那对染色单体,最终在胞质分裂时将进入一个子细胞,或丢失在分裂沟中或两染色单体分开,各自分别进入原相对的子细胞。作为光捕捉Titanium-Sapphire激光器发射的700—760毫微米波长的激光束,比Nd:YAG激光的1.06微米波长能在更高的输出能量水平下操作而产生较小的对细胞损伤的副作用,从而更容易操作染色体。在适宜的输出能量水平下操作,光捕捉不会对细胞造成损伤,受光捕捉的细胞一般都能继续分裂直至形成两个子细胞。实验结果证明光捕捉技术是一项研究活细胞纺锤体、染色体运动等细胞生物学问题而又不损伤细胞的良好工具。光捕捉技术也可能对诱发单体、三体细胞,研究细胞遗传提供新的手段。  相似文献   

15.
A single-beam gradient force optical trap was combined with a pulsed UV laser microbeam in order to perform laser induced cell fusion. This combination offers the possibility to selectively fuse two single cells without critical chemical or electrical treatment. The optical trap was created by directing a Nd:YAG laser, at a wavelength of 1.06 microns, into a microscope and focusing the laser beam with a high numerical aperture objective. The UV laser microbeam, produced by a nitrogen-pumped dye laser (366 nm), was collinear with the trapping beam. Once inside the trap, two cells could be fused with several pulses of the UV laser microbeam, attenuated to an energy of approximately 1 microJ/pulse in the object plane. This method of laser induced cell fusion should provide increased selectivity and efficiency in generating viable hybrid cells.  相似文献   

16.
Optical trapping (synonymous with optical tweezers) has become a core biophysical technique widely used for interrogating fundamental biological processes on size scales ranging from the single-molecule to the cellular level. Recent advances in nanotechnology have led to the development of ‘nanophotonic tweezers,’ an exciting new class of ‘on-chip’ optical traps. Here, we describe how nanophotonic tweezers are making optical trap technology more broadly accessible and bringing unique biosensing and manipulation capabilities to biological applications of optical trapping.  相似文献   

17.
Abstract 1 The interplay between pest movement and trap crop physical design is modelled in a situation where the pest moves by a random walk with spatially variable mobility. Questions addressed are: (i) how does the proportion of trap crop area of the total field area influence the equilibrium distribution of pests among the crop and the trap crop and (ii) how do crop patch size and shape influence the speed of pest redistribution from the crop to the trap crop. 2 When pest mobility in the trap crop is clearly lower than that in the crop, the pest population in the crop decreases very sharply for small trap crop proportions. When mobility in the trap crop is slightly closer to that in the crop, the pest population in the crop decreases much more gradually with increasing trap crop proportion. Thus finding a trap crop that the pest distinctly prefers over the crop appears to be crucial for developing efficient trap crop systems. 3 The rate of decay in the pest population in the crop increases with increasing perimeter to area ratio of the crop patch. Hence, designing field layouts to increase the perimeter to area ratio of crop patches may be beneficial.  相似文献   

18.
Confocal microscopy is very useful in biology because of its three dimensional imaging capacities and has proven to be an excellent tool to study the 3D organization of, for instance, cell structures. This property of confocal microscopy makes it also very suitable for observation during guidance of the three dimensional manipulation of single cells or cell elements. Therefore we decided to integrate a confocal microscope and a single beam optical manipulator into a single instrument. The advantage of optical manipulation over mechanical techniques is that it is non-invasive and therefore may be applied on living (micro-) organisms and cells. The creation of an effective single beam optical trap requires the use of a high numerical aperture (N.A.) objective to focus the laser beam. In this paper we briefly discuss the vertical or axial force exerted on a sphere in a single beam trap. The axial force on a sphere placed on the optical axis, caused by reflection and refraction, is calculated applying a electromagnetic vector diffraction theory to determine the field distribution in the focal region. One of the results is that the particle also experiences a vertical trapping force towards the focusing lens when it is in the strongly convergent part of the field in addition to the known negative signed trapping force in the divergent part of the field. Further we describe an instrumental approach to realize optical trapping in which the optical trap position is controlled by moving the focusing objective only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The application of optical traps has come to the fore in the last three decades. They provide a powerful, sterile and noninvasive tool for the manipulation of cells, single biological macromolecules, colloidal microparticles and nanoparticles. An optically trapped microsphere may act as a force transducer that is used to measure forces in the piconewton regime. By setting up a well-calibrated single-beam optical trap within a fluorescence microscope system, one can measure forces and collect fluorescence signals upon biological systems simultaneously. In this protocol, we aim to provide a clear exposition of the methodology of assembling and operating a single-beam gradient force trap (optical tweezers) on an inverted fluorescence microscope. A step-by-step guide is given for alignment and operation, with discussion of common pitfalls.  相似文献   

20.
The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in concentrated or crowded particle suspensions, which is difficult using alternative force field-based trapping methods. The hydrodynamic trap is user-friendly, straightforward to implement and may be added to existing microfluidic devices to facilitate trapping and long-time analysis of particles. Overall, the hydrodynamic trap is a new platform for confinement, micromanipulation, and observation of particles without surface immobilization and eliminates the need for potentially perturbative optical, magnetic, and electric fields in the free-solution trapping of small particles.Download video file.(62M, mov)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号