首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
The isolation and characterization of mutant alleles in a regulatory gene affecting NADP+-dependent enzymes are described. The locus,mex, is at position 26.5 ± 0.74 on the X chromosome ofDrosophila melanogaster. The newly isolated mutant allele,mex 1, is recessive to either themex allele found in Oregon-R wild-type individuals or that found in thecm v parental stock in which the new mutants were induced. Themex 1 mutant allele is associated with statistically significant decreases in malic enzyme (ME) specific activity and ME specific immunologically cross-reacting material (ME-CRM) in newly emerged adult males. During this same developmental stage in males, the NADP+-dependent isocitrate dehydrogenase specific activity increases to statistically significant levels. Females of themex 1 mutant strain show statistically significant elevated levels of the pentose phosphate shunt enzymes, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Isoelectric focusing and thermolability comparisons of the active ME from mutant and control organisms indicate that the enzyme is the same. Developmental profiles ofmex 1 and control strains indicate that this mutant allele differentially modulates the levels of ME enzymatic activity and ME-CRM during development. This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to M.M.B.  相似文献   

3.
Summary Analysis of electrophoretic loci shows that at least four differences exist in isozymes of long- and short-lived populations ofD. melanogaster, descended by selection from a common ancestral stock. Adults of longlived populations differ in gene dosage of phosphoglucomutase (PGM), NAD malate dehydrogenase (MHD), NADP malic enzyme (ME) and by additional mobility variants of glucose-6-phosphate dehydrogenase (G6PD). Larvae, however, differ only by variants of G6PD. The differences in these enzymes, considered together with the greater flight endurance that long-lived populations have shown elsewhere, suggest that increased glycogen synthesis plays a significant role in the improved life span of selected populations. Adaptation to selection for increased life span may, therefore, derive from an improved ability to use dietary sucrose in the media provided. The distribution of electrophoretic loci agrees with the results of a study indicating the position of genetic elements contributing to life span.  相似文献   

4.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19–21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

5.
Docosahexaenoic acid (DHA) is an important and widely used infant food additive. In this study, the effects of phosphate concentration on lipid and especially DHA synthesis in the oleaginous fungi Schizochytrium sp. HX-308 have been investigated in batch cultures. The maximum DHA yield (8.9 g/L) and DHA productivity (148.3 mg/L h) in 0.1 g/L KH2PO4 concentration were higher than the DHA yield (6.2 g/L) and DHA productivity (86.1 mg/L h) in 4 g/L KH2PO4 concentration. Furthermore, differences in related enzyme activities (malic enzyme, glucose-6-phosphate dehydrogenase and NAD+-isocitrate dehydrogenase) between phosphate-sufficient and phosphate-limitation conditions were assayed. The results showed that the phosphate-limitation condition could maintain higher activities of malic enzyme and glucose-6-phosphate dehydrogenase in addition to lower activity of NAD+-isocitrate dehydrogenase. In addition, glucose-6-phosphate dehydrogenase might be the main supplier of NADPH at the early stage of fermentation while malic enzyme might be the provider at the late stage. This information might explain the regulation mechanism of phosphate limitation for lipid production and be useful for further DHA production enhancement.  相似文献   

6.
Summary Forty-six cell cultures established from amniocentesis fluids were preserved in liquid nitrogen and later recovered from the frozen state with little loss of viability as compared to prefreeze viability. Five to 10% glycerol was found to be optimal for preservation in liquid nitrogen, and as few as 5×105 viable cells per frozen ampule could initiate cell growth. Storage in liquid nitrogen did not affect the genetic stability of glucose-6-phosphate dehydrogenase, lactate dehydrogenase, malic dehydrogenase, leucine aminopeptidase, acid phosphatase, or 6-phosphogluconic acid dehydrogenase isozymes of the amnion cultures. These studies were supported by Contract NIH-NIGMS-72-2070, Grant CA-04953-13 from the National Cancer Institute; General Research Support Grant FR-5582 from the National Institutes of Health; and Grant-in-Aid Contract M-43 from the State of New Jersey. Recipient of Research Career Award 5-K3,16, 749 from the National Institutes of Health.  相似文献   

7.
Malic enzyme [L-malate: NAD(P)+ oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)+). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO3 ? fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD+, and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO3 ? and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 °C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD+.  相似文献   

8.
Summary A quantitative cytochemical assay for NAD+ kinase-like activity in the guinea-pig thyroid gland is described. The NADP+ produced by the activity of the kinase was used to drive the NADP+-dependent enzyme glucose-6-phosphate dehydrogenase which is endogenous to the tissue. The activity of glucose-6-phosphate dehydrogenase is greatly in excess of that of the kinase and was unaffected by the constituents of the kinase incubation medium (ATP, Mg2+ and NAD+) either alone or in combination. Kinase activity was dependent both on ATP and Mg2+, with maximal activity seen when the Mg-ATP ratio was between 1:1 and 4:1. Free ATP inhibited the activity of the enzyme. Enzyme activity was exhibited over a broad pH range (7–9) with a peak at pH 8.2. The sulphhydryl-blocking agents,p-chloromercuribenzoate, iodoacetate and iodoacetamide (at 1 mM), completely abolished kinase activity but were without effect on glucose-6-phosphate dehydrogenase activity.N-ethylmaleimide and citrate (both at 1 mM) had no effect on either kinase or glucose-6-phosphate dehydrogenase activities.  相似文献   

9.
M J Stark  R Frenkel 《Life sciences》1974,14(8):1563-1575
The activity of rat liver malic enzyme shows a marked increase when the animals are maintained on a restricted protein diet. Of the NADP-linked dehydrogenases tested (malic enzyme, glucose-6-phosphate dehydrogenase, and isocitrate dehydrogenase), the response is confined only to malic enzyme. Dietary sucrose is not required for the increase in activity, but elevated dietary levels of this disaccharide increase hepatic malic enzyme regardless of dietary protein. Glucose-6-phosphate dehydrogenase activity is increased by dietary sucrose provided adequate dietary protein is supplied. The specificity of the response to lowered dietary protein shown by malic enzyme suggests that the control of the hepatic enzyme is mediated by processes different from those controlling the activity of glucose-6-phosphate dehydrogenase.  相似文献   

10.
After various permeabilization procedures, plant cells obtained from suspension cultures of Catharanthus roseus are permeable to enzyme substrates which cannot enter the intact cell. Five enzymes of the primary metabolism, hexokinase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, malic enzyme, and citrate dehydrogenase, are studied with special emphasis on the two-enzyme system hexokinase/glucose-6-phosphate dehydrogenase. It is found that permeabilized cells immobilized in agarose retain their enzymatic activities far longer on storage than nonimmobilized cells. Whereas cells permeabilized by various methods show different initial enzymatic activity, the subsequent decrease of activity with time is at the same relative rate. Optimal initial activity is found with dimethyl sulfoxide-treated plant cells. As an enzyme of the secondary metabolism, we choose cathenamice reductase forming ajmalicine alkaloids from cathenamine. It is found that in dimethyl sulfoxide-treated cells the enzyme activity remains intact and that the addition of the coenzyme required in this step, NADPH, considerably increases the yield of product formed. Also, excretion into the medium is enhanced in both these immobilized and permeabilized systems.  相似文献   

11.
Summary Succinic dehydrogenase, five DPN-linked dehydrogenases-lactic dehydrogenase, malic dehydrogenase, glutamic dehydrogenase, -glycerophosphate dehydrogenase, -hydroxybutyric dehydrogenase, two TPN linked dehydrogenases — glucose-6-phosphate dehydrogenase, isocitric dehydrogenase and 3-ol steroid dehydrogenase were studied in mouse, rat, guinea pig, rabbit, dog, cat, cow, monkey and human adrenal glands. Histochemical studies were made of a characteristic distribution of different level of enzyme activity. In mammals adrenal glands, glucose-6-phosphate dehydrogenase showed the highest activity and its localization was divided into the following two groups: 1) High enzymatic activity was demonstrated in the zona fasciculata and reticularis of the rat, guinea pig, rabbit, cat and 2) high enzymatic activity was demonstrated in the zona glomerulosa and reticularis of the dog, cow and monkey. A precise relationship between the localization and endocrinological function remains abscure.  相似文献   

12.
In the previous paper, most of the enzymes of the Embden-Meyerhof-Parnas pathway and glucose-6-phosphate dehydrogenase have been demonstrated to be present in cell-free extracts of Brevibacterium divaricatum, No. 1627. In this paper, the presence of condensing enzyme, aconitase, TPN-linked isocitric dehydrogenase, succinic dehydrogenase, fumarase, DPN-linked malic dehydrogenase, TPN-linked malic enzyme, oxalacetic carboxylase, isocitritase and malate synthetase in cell-free extracts of this bacterium was also demonstrated. From these results it was concluded that a strain of Brevibacterium divaricatum which has been found to contain all of the enzymes of the tricarboxylic acid cycle, would be capable of forming the key enzymes of the glyoxylate bypass as well. It suggests that the accumulation of α-ketoglutarate involves the glyoxylate bypass besides the tricarboxylic acid cycle in this bacterium.  相似文献   

13.
We selected the common shrew (Sorex araneus) to generate the first insectivore gene map. Shrew-Chinese hamster and shrew-mouse somatic cell hybrid cells were constructed. When the 119 shrew-rodent clones were characterized, only shrew chromosomes were found to have segregated. A panel of hybrid clones was selected for gene assignment. The genes for hypoxanthine phosphoribosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), and malate dehydrogenase 1 (MDH1) were assigned to shrew Chromosome (Chr) de [which is the product of a tandem fusion between the original mammalian X Chromosome (Chr) and an autosome], the genes for adenosine deaminase (ADA) and 6-phosphogluconate dehydrogenase (PGD) to Chromosome jl, the gene for thymidine kinase (TK) to Chromosome hn, and the gene for lactate dehydrogenase (LDHA) to chromosome ik. Further studies are in progress.  相似文献   

14.
SHAW and Barto1 have demonstrated the presence of an autosomally inherited glucose-6-P dehydrogenase (G6PD) in the deer mouse. Subsequently, Ohno et al.2 found a similar enzyme in trout and showed that this enzyme and the autosomally inherited mouse enzyme differed from the sex-linked G6PD in possessing marked catalytic activity with galactose-6-P. This autosomally inherited G6PD was therefore named hexose-6-P dehydrogenase (H6PD)2,3. It was shown to oxidize glucose-6-P, galactose-6-P, mannose-6-P and 2-deoxy glucose-6-P with a Km of the order of 10?5 M. It also oxidizes glucose with a Km of 0.7 M3. It appears to be identical to the so-called “glucose dehydrogenase”. The enzyme utilizes both NAD and NADP and is microsome-bound. G6PD is localized in the soluble fraction of the cells of various tissues. Although it has been shown that two dehydrogenases from liver have different substrate specificity, molecular weight and elec-trophoretic mobility3,4, it has been suggested that the two enzymes are merely isozymes and they might be interconvertible5–7. We have now partially purified the two enzymes from human liver and show that they have different immunological properties.  相似文献   

15.
1. Periodate-oxidized 3-aminopyridine-adenine dinucleotide phosphate inhibited the proliferation of oral epithelium cancer and breast cancer cell lines. 2. The fast growing less differentiated embryonic kidney cell was more affected by the reagent then the embryonic lung fibroblast cell. 3. Incorporation of [3H]leucine of the treated cancer cells was inhibited. Incorporation of [3H]uridine was increased. Incorporation of [3H]thymidine was first increased and then decreased. 4. Tumor malic enzyme activity was inhibited by the reagent; but the treated cells did not show any difference in malic enzyme or glucose-6-phosphate dehydrogenase levels.  相似文献   

16.
Summary The histochemistry of various oxidative enzymes and complex carbohydrates in the epidermis of the catfishHeteropneustes fossilis was investigated after exposure to sublethal concentrations of the detergent sodium alkulbenzenesulphonate.It was found that the detergent treatment was accompanied by a marked increase in the number of mucous cells which produce histochemically detectable amounts of acidic glycoproteins with a shift towards the production ofO-acetylated sialic acids. The activities of mitochondrial enzymes were lost in the superficial cell layers. In contrast the activities of glucose-6-phosphate and lactate dehydrogenase increased considerably. The rise in glucose-6-phosphate dehydrogenase was correlated with the metabolic requirements for the enhanced production of mucus under stress.The changes in both enzyme activities and in the chemical composition of mucus may provide a suitable experimental model for histochemical investigations of the effect of stress induced by pollulants on aquatic organisms.  相似文献   

17.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Cytoplasmic activities of NADP-linked malic enzyme (E.C. 1.1.1.40), glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) and NADP-linked isocitrate dehydrogenase (E.C. 1.1.1.42) were determined in tissues of selected avian species, and compared with those in mammals. Malic enzyme was generally more active in avian liver and kidney than in the corresponding mammalian tissues. Hepatic activities as high as 200 units/g wet wt and 100 units/g wet wt were recorded in the Nectariniidae and the Ploceidae respectively. Glucose-6-phosphate dehydrogenase was generally less active in avian tissues than malic enzyme. In passerine birds activities were very low indeed, and in most cases spectrophotometrically undetectable. Malic enzyme and glucose-6-phosphate dehydrogenase were highly active in the adipose tissue of mammals but were inactive in the adipose tissue of birds. Marked increases in hepatic malic enzyme and glucose-6-phosphate dehydrogenase activities were associated in birds with premigratory fattening. Activities of isocitrate dehydrogenase were comparable in the corresponding avian and mammalian tissues, including adipose tissue.  相似文献   

19.
We have investigated, with and without the influence of X-inactivation, the relationship between autosomal gene-dosage and gene-product in a mammalian system, the mouse. The gene was mitochondrial malic enzyme (Mod-2), shown to lie on Chromosome 7 between the albino (c) and shaker-1 (sh-1) loci, and the enzyme was its product, mitochondrial malic enzyme (MOD-2). Gene duplication, with and without the influence of X-inactivation, was achieved using a translocation that involves the insertion of a portion of Chr 7, including Mod-2 , into the X, T(X;7)1Ct. A 1:1 relationship for Mod-2 dosage and MOD-2 activity was found in heart mitochondria. Evidence of X-inactivation of Mod-2 was noted in heart and kidney preparations from females carrying a Mod-2 duplication (one copy of Mod-2 in the X and two copies of Mod-2 on Chr 7). We conclude that the expression of an autosomal locus attached to X-chromatin depends upon whether the translocation is in a balanced or unbalanced state.  相似文献   

20.
Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP+ ratio. It is likely that as a side effect of the increase of NADPH/NADP+ ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号