首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification of human hepatic glutathione S-transferases.   总被引:2,自引:0,他引:2       下载免费PDF全文
Human hepatic glutathione S-transferase (GST) subunits were characterized and quantified with the aid of a recently developed h.p.l.c. method. In 20 hepatic tissue specimens the absolute amounts of the basic Class Alpha subunits B1 and B2, the near-neutral Class Mu subunits mu and psi and the acidic subunit pi were determined. The average total amount of GST was 37 micrograms/mg of cytosolic protein, with the Class Alpha GST being the predominant class (84% of total GSTs), and pi as the sole representative of the Class Pi GSTs present in the lowest concentration (4% of total GSTs). Large interindividual differences were observed for all subunits, with variations up to 27-fold, depending on the subunit. For the Class Alpha GST-subunits B1 and B2, a biphasic ratio was observed. The genetic polymorphism of the subunits mu and psi was confirmed by h.p.l.c. analysis, and correlated with the enzymic glutathione conjugation of trans-stilbene oxide and with Western blotting of cytosols, using a monoclonal anti-(Class Mu GST) antibody. Of the 20 livers examined, ten contained only mu, whereas the occurrence of psi alone, and the combination of mu and psi, were found in only one liver each.  相似文献   

2.
The basic glutathione S-transferases in human liver are composed of at least two immunochemically distinct polypeptides, designated B1 and B2. These subunits exist as homodimers, but can hybridize to form the B1B2 heterodimer [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Although these basic glutathione S-transferases possess similar catalytic properties, the B2 subunit exhibits significantly greater selenium-independent glutathione peroxidase activity than subunit B1. The use of the ligands haematin, tributyltin acetate and Bromosulphophthalein as inhibitors of 1-chloro-2,4-dinitrobenzene-GSH-conjugating activity clearly discriminate between the B1 and B2 subunits and should help facilitate their identification. Peptide mapping experiments showed that B1 and B2 are structurally distinct, but related, subunits; subunit B1 yielded 43 tryptic peptides, seven of which were unique, whereas subunit B2 yielded 40 tryptic peptides, four of which were unique.  相似文献   

3.
Normal rat liver expresses Ya (Mr 25,500), Yc (Mr 27,500) and Yk (Mr 25,000) Class Alpha glutathione S-transferase (GST) subunits. The Ya-type subunit can be resolved into two separate polypeptides, designated Ya1 and Ya2, by reverse-phase h.p.l.c. In rat livers that possess aflatoxin B1-induced pre-neoplastic nodules, a marked increase is observed in the expression of Ya1, Ya2, Yc and Yk; of these subunits, Ya2 exhibited the greatest increase in concentration. The Ya1 and Ya2 subunits isolated from nodule-bearing livers were cleaved with CNBr, and the purified peptides were subjected to automated amino-acid-sequence analysis. Differences in the primary structures of the two Ya GST subunits were found at positions 31, 34, 107 and 117. These data demonstrate that Ya1 and Ya2 are distinct polypeptides and are the products of separate genes. The amino acid sequences obtained from Ya1 and Ya2 were compared with the cloned cDNAs pGTB 38 [Pickett, Telakowski-Hopkins, Ding, Argenbright & Lu (1984) J. Biol. Chem. 259, 4112-4115] and pGTR 261 [Lai, Li, Weiss, Reddy & Tu (1984) J. Biol. Chem. 259, 5182-5188], which encode rat Ya-type subunits. From these comparisons it appears probable that Ya1 represents the GST subunit encoded by pGTR 261, whereas Ya2 represents the subunit encoded by pGTB 38. It is likely that the over-expression of Ya1 and Ya2 in nodule-bearing livers is of major significance in the acquired resistance of nodules to aflatoxin B1, since previous work [Coles, Meyer, Ketterer, Stanton & Garner (1985) Carcinogenesis 6, 693-697] has shown that the Ya-type GST subunit has high activity towards aflatoxin B1 8,9-epoxide.  相似文献   

4.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

5.
Expression of glutathione S-transferases in rat brains   总被引:3,自引:0,他引:3  
The tissue-specific expression of glutathione S-transferases (GSTs) in rat brains has been studied by protein purification, in vitro translation of brain poly(A) RNAs, and RNA blot hybridization with cDNA clones of the Ya, Yb, and Yc subunit of rat liver GSTs. Four classes of GST subunits are expressed in rat brains at Mr 28,000 (Yc), Mr 27,000 (Yb), Mr 26,300, and Mr 25,000. The Mr 26,3000 species, or Y beta, has an electrophoretic mobility between that of Ya and Yb, similar to the liver Yn subunit(s) reported by Hayes (Hayes, J. D. (1984) Biochem. J. 224, 839-852). RNA blot hybridization of brain poly(A) RNAs with a liver Yb cDNA probe revealed two RNA species of approximately 1300 and approximately 1100 nucleotides. The band at approximately 1300 nucleotides was absent in liver poly(A) RNAs. The Mr 25,000 species, or Y delta, can be immunoprecipitated by antisera against rat heart and rat testis GSTs, but not by antiserum against rat liver GSTs. Therefore, the Y delta subunit may be related to the "Mr 22,000" subunit reported by Tu et al. (Tu, C.-P.D., Weiss, M.J., Li, N., and Reddy, C. C. (1983) J. Biol. Chem. 258, 4659-4662). The abundant liver GST subunits, Ya, are not expressed in rat brains as demonstrated by electrophoresis of purified brain GSTs and a lack of isomerase activity toward the Ya-specific substrate, delta 5-androstene-3,17-dione. This is apparently because of the absence of Ya mRNA expression prior to RNA processing. The data on the preferential expression of Yc subunits in rat brains, together with the differential phenobarbital inducibility of the Ya subunit(s) in rat liver reported by Pickett et al. (Pickett, C. B., Donohue, A. M., Lu, A. Y. H., and Hales, B. F. (1982) Arch. Biochem. Biophys. 215, 539-543), suggest that the Ya and Yc genes for rat GSTs are two functionally distinct gene families even though they share 68% DNA sequence homology. The expression of multiple GSTs in rat brains suggests that GSTs may be involved in physiological processes other than xenobiotics metabolism.  相似文献   

6.
1. The major hepatic glutathione S-transferases (GSTs) from gerbil, guinea-pig, hamster, mouse and rat comprise Ya- (Mr 25,500-25,800), Yb- (Mr 26,100-26,400), Yc- (Mr 27,000-27,500) and Yf- (Mr 24,800) type subunits. 2. In all rodent species the GST subunits possess characteristic affinities for S-hexyglutathione-Sepharose and are eluted at distinct positions when a gradient of counter-ligand is employed to develop this affinity gel. The enzymes that bind to this matrix can be eluted, according to their subunit composition, in the order Ya-, Yc-, Yf- and Yb-containing GST; glyoxalase I, also retained by S-hexylglutathione-Sepharose, is eluted after the major GST YbYb peak. 3. Conditions are also described for the isocratic affinity elution of S-hexylglutathione-Sepharose that allow rat GST to be divided into four separate fractions (pools 1-4). A further fraction (pool 5) can be prepared from material that does not bind S-hexylglutathione-Sepharose and is obtained by chromatography on glutathione-Sepharose. 4. The sequential use of S-hexylglutathione-Sepharose and glutathione-Sepharose has facilitated the isolation of novel GSTs by enriching the various affinity-purified fractions with different subunits. This strategy allowed the Yk (Mr 25,000) and Yo (Mr 26,500) subunits from rat testis as well as Y1 (Mr 25,700) from rat kidney to be rapidly purified. 5. The binding properties of GST subunits for S-hexylglutathione-Sepharose have been compared with their Km values for GSH. The elution order from this matrix is inversely related to the Km value. The GSTs that do not bind to S-hexylglutathione-Sepharose have considerably higher Km values for GSH (i.e. greater than 2.0 mM) than do those enzymes that readily bind to the affinity gel (i.e. 0.13-0.77 mM). GST YkYk and YoYo, which have weak affinities for S-hexylglutathione-Sepharose, possess intermediate Km values for GSH of 1.0 and 1.2 mM respectively.  相似文献   

7.
We have developed chromatographic and mathematical protocols that allowed the high resolution of glutathione S-transferase (GST) subunits, and the identification of a previously unresolved GST monomer in rat kidney cytosol; the monomer was identified tentatively as subunit 6. Also, an aberrant form of GST 7-7 dimer appeared to be present in the kidney. This development was utilized to illustrate the response of rat kidney GST following cis-platinum treatment in vivo. Rat kidney cytosol was separated into three 'affinity families' of GST activity after elution from a GSH-agarose matrix. The affinity peaks were characterized by quantitative differences in their subunit and dimeric compositions as determined by subsequent chromatography on a cation-exchange matrix and specific activity towards substrates. By use of these criteria, the major GST dimers of affinity peaks were tentatively identified. The major GST dimers in peak I were GST 1-1 and 1-2, in affinity peak II it was GST 2-2, and in peak III they were GST 3-3 and 7-7. GST 3-6 and/or 4-6, which have not been previously resolved in kidney cytosol, were also present in peak II. Alterations in the kidney cytosolic GST composition of male rats were detected subsequent to the administration of cis-platinum (7.0 mg/kg subcutaneously, 6 days). This treatment caused a pronounced alteration in the GST profile, and the pattern of alteration was markedly different from that reported for other chemicals in the kidney or in the liver. In general, the cellular contents of the GSTs of the Alpha and the Mu classes decreased and increased respectively. It is postulated that the decrease in the Alpha class of GSTs by cis-platinum treatment may be related to renal cortical damage and the loss of GSTs in the urine. The increase in the Mu class of GSTs could potentially stem from a lowered serum concentration of testosterone; the latter is a known effect of cis-platinum treatment.  相似文献   

8.
A novel hepatic enzyme, glutathione S-transferase K, is described that, unlike previously characterized transferases, possesses little affinity for S-hexylglutathione-Sepharose 6B but can be isolated because it binds to a glutathione affinity matrix. A purification scheme for this new enzyme was devised, with the use of DEAE-cellulose, S-hexylglutathione-Sepharose 6B, glutathione-Sepharose 6B and hydroxyapatite chromatography. The final hydroxyapatite step results in the elution of three chromatographically interconvertible forms, K1, K2 and K3. The purified protein has an isoelectric point of 6.1 and comprises subunits that are designated Yk (Mr 25,000); during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, it migrates marginally faster than the Ya subunit but slower than the pulmonary Yf monomer (Mr 24,500). Transferase K displays catalytic, immunochemical and physical properties that are distinct from those of other liver transferases. Tryptic peptide maps suggest that transferase K is a homodimer, or comprises closely homologous subunits. The tryptic fingerprints also demonstrate that, although transferase K is structurally separate from previously described hepatic forms, a limited sequence homology exists between the Yk, Ya and Yc polypeptides. These structural data are in accord with the immunochemical results presented in the accompanying paper [Hayes & Mantle (1986) Biochem. J. 233, 779-788].  相似文献   

9.
Rat white adipocytes express three distinct 'Gi-like' guanine-nucleotide-binding proteins (G-proteins) [Mitchell, Griffiths, Saggerson, Houslay, Knowler & Milligan (1989) Biochem. J. 262, 403-408]. We have previously noted elevated levels of Gi in membranes of adipocytes from hypothyroid rats [Milligan, Spiegel, Unson & Saggerson (1987) Biochem. J. 247, 223-227]. Using a series of anti-peptide antisera able to discriminate between the individual gene products we have examined levels of each Gi-like G-protein in adipocyte membranes of hypothyroid rats compared with euthyroid controls. We demonstrate that up-regulation of Gi in adipocytes of hypothyroid rats is not restricted to a single subtype of Gi but that each of Gi1 alpha, Gi2 alpha and Gi3 alpha is present at markedly higher levels compared with euthyroid animals. In contrast, levels of both the 45 and 42 kDa forms of Gs alpha were not altered substantially in the hypothyroid state.  相似文献   

10.
A novel cytosolic Alpha class glutathione S-transferase (GST) that is not normally expressed in mouse liver was found to be markedly induced (at least 20-fold) by the anti-carcinogenic compound butylated hydroxyanisole. This enzyme (designated GST Ya1 Ya1) did not bind to either the S-hexylglutathione-Sepharose or the glutathione-Sepharose affinity matrices, and purification was achieved by using bromosulphophthalein-glutathione-Sepharose. The purified isoenzyme, which comprises subunits of Mr 25,600, was characterized, and its catalytic, electrophoretic, immunochemical and structural properties are documented. GST Ya1 Ya1 was shown to be distinct from the Alpha class GST that is expressed in normal mouse liver and is composed of 25,800-Mr subunits; the Alpha class isoenzyme that is constitutively expressed in the liver is now designated GST Ya3 Ya3. Hepatic concentrations of GST Ya3 Ya3 were not significantly affected when mice were treated with butylated hydroxyanisole. Both Pi class GST (subunit Mr 24,800) and Mu class GST (subunit Mr 26,400) from female mouse liver were induced by dietary butylated hydroxyanisole. By contrast, hepatic concentrations of microsomal GST (subunit Mr 17,300) were unaffected.  相似文献   

11.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

12.
The possible nuclear compartmentalization of glutathione S-transferase (GST) isoenzymes has been the subject of contradictory reports. The discovery that the dinitrosyl-diglutathionyl-iron complex binds tightly to Alpha class GSTs in rat hepatocytes and that a significant part of the bound complex is also associated with the nuclear fraction (Pedersen, J. Z., De Maria, F., Turella, P., Federici, G., Mattei, M., Fabrini, R., Dawood, K. F., Massimi, M., Caccuri, A. M., and Ricci, G. (2007) J. Biol. Chem. 282, 6364-6371) prompted us to reconsider the nuclear localization of GSTs in these cells. Surprisingly, we found that a considerable amount of GSTs corresponding to 10% of the cytosolic pool is electrostatically associated with the outer nuclear membrane, and a similar quantity is compartmentalized inside the nucleus. Mainly Alpha class GSTs, in particular GSTA1-1, GSTA2-2, and GSTA3-3, are involved in this double modality of interaction. Confocal microscopy, immunofluorescence experiments, and molecular modeling have been used to detail the electrostatic association in hepatocytes and liposomes. A quantitative analysis of the membrane-bound Alpha GSTs suggests the existence of a multilayer assembly of these enzymes at the outer nuclear envelope that could represent an amazing novelty in cell physiology. The interception of potentially noxious compounds to prevent DNA damage could be the possible physiological role of the perinuclear and intranuclear localization of Alpha GSTs.  相似文献   

13.
Glutathione affinity chromatography and two-dimensional electrophoresis (2-DE) were used to purify glutathione binding proteins from Caenorhabditis elegans. All proteins identified after peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight were found to belong to the glutathione S-transferase (GST) superfamily. From the 26 individual spots identified, 12 different GSTs were isolated. Of these, five were found on the gel only once, whilst the remaining seven were represented by 21 separate spots. Most of the GSTs identified were of the nematode specific class, however, three Alpha class GSTs, a Pi and a Sigma class GST were also isolated.  相似文献   

14.
Glutathione (GSH) S-transferase (GST) isoenzymes of the small intestine and colon of female A/J mice have been purified and characterized to determine their interrelationships with other murine GSTs. Cytosolic GST activity in the small intestine was at least due to six isoenzymes with isoelectric points (pI) of 9.5, 9.3, 9.1, 8.5, 6.2 and 5.5. Small intestine isoenzymes with pI values of 9.5, 9.3, 8.5, and 6.2 were identical to the mGSTA1-1 (Alpha class), mGSTP1-1 (Pi class), mGSTM1-1 (Mu class) and mGSTA4-4 (Alpha class), respectively, of other A/J mouse tissues on the basis of their reverse-phase HPLC elution profile, immunological cross-reactivity and/or N-terminal region amino acid sequence. Even though GST9.1 of the small intestine cross-reacted with the antibodies raised against Pi class GST, reverse-phase HPLC and N-terminal amino acid sequence analyses suggested that this isoenzyme may be structurally different from mGSTP1-1 as well as mGSTP2-2. Likewise, despite immunological similarity with the Mu class GSTs, small intestine GST5.5 appeared to be different from other Mu class murine GSTs characterized previously. Cytosolic GST activity in the colon was mainly due to four isoenzymes with pI values of 9.8, 9.4, 6.6 and 5.8. While the identity of colon GST6.6 could not be established due to its low abundance, GST9.8, GST9.4 and GST5.8 were identical to mGSTP1-1, mGSTM1-1 and mGSTA4-4, respectively, of other A/J mouse tissues including the small intestine. Isoenzymes corresponding to small intestine GST9.1 and GST5.5 could not be detected in the colon. The results of the present study indicate that the small intestine of female A/J mice is better equipped for protection against toxic effects of electrophiles than colon.  相似文献   

15.
The purification of a hybrid glutathione S-transferase (B1 B2) from human liver is described. This enzyme has an isoelectric point of 8.75 and the B1 and B2 subunits are distinguishable immunologically and are ionically distinct. Hybridization experiments demonstrated that B1 B1 and B2 B2 could be resolved by CM-cellulose chromatography and have pI values of 8.9 and 8.4 respectively. Transferase B1 B2, and the two homodimers from which it is formed, are electrophoretically and immunochemically distinct from the neutral enzyme (transferase mu) and two acidic enzymes (transferases rho and lambda). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis demonstrated that B1 and B2 both have an Mr of 26 000, whereas, in contrast, transferase mu comprises subunits of Mr 27 000 and transferases rho and lambda both comprise subunits of Mr 24 500. Antisera raised against B1 or B2 monomers did not cross-react with the neutral or acidic glutathione S-transferases. The identity of transferase B1 B2 with glutathione S-transferase delta prepared by the method of Kamisaka, Habig, Ketley, Arias & Jakoby [(1975) Eur. J. Biochem. 60, 153-161] has been demonstrated, as well as its relationship to other previously described transferases.  相似文献   

16.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

17.
We have characterized a second cDNA sequence, pGTH2, for the human liver glutathione S-transferases Ha subunits. It is 95% homologous base-for-base to the Ha subunit 1 cDNA, pGTH1, except for its longer 3' noncoding sequences. Our results indicate that the multiple basic human liver glutathione S-transferases are products of separate genes. The proposal [Kamisaka, K., Habig, W. H., Ketley, J. N., Arias, I. M., and Jakoby, W. B. (1975) Eur. J. Biochem. 60, 153-161] that deamidation may be a physiologically important process for generating glutathione S-transferases isozyme multiplicity can be all but ruled out.  相似文献   

18.
When prostaglandin H2 (PGH2) was incubated with a mixture of glutathione S-transferases (GSTs) obtained from S-hexylglutathione affinity chromatography, as much as 40% of it was transformed into a prostanoid whose Rf value corresponded to that of the standard PGF2 alpha. The reaction product was identified as PGF2 alpha by cochromatography with a standard on TLC and HPLC. The stereochemistry of the hydroxyl groups on C-9 and C-11 of the cyclopentane ring was confirmed by mass-spectral analysis of the butylboronate derivative of the reaction product. Neither PGE2 nor PGD2 could substitute for PGH2 in the reaction mixture, indicating that the mechanism of formation of PGF2 alpha is a direct two-electron reduction of the endoperoxide moiety and not through a reduction of the keto group on PGE2 or PGD2. Individual GST isozymes exhibited distinct differences in their catalytic rates of formation of PGF2 alpha from PGH2. Among various GSTs, isozyme IV, a homodimer of Ya size subunit showed the highest activity with a Vmax value of approximately 6000 nmol.min-1.mg-1. In general, the isozymes containing Ya and Yc subunits exhibited relatively high activity toward PGH2, indicating that it is the non-selenium-dependent glutathione peroxidase activity associated with the GSTs that might be responsible for the reduction of PGH2 to PGF2 alpha. Interestingly, isozyme IV also exhibited the highest PGE2 forming activity with a Vmax value of approximately 3000 nmol.min-1.mg-1 followed by isozyme I, a homodimer of Yb subunit, which had a Vmax value of 420 nmol.min-1.mg-1. Based on these results, it appears that the GSTs play an important role in the biosynthesis of classical PGs. Therefore, it is conceivable that the tissue-specific formation of PGF2 alpha and PGE2 might, in part, be due to the relative distribution of these enzyme activities in a given tissue. Our results have not only confirmed the previously published reports (E. Christ-Hazelhof et al. (1976) Biochim. Biophys. Acta 450, 450-461), but also have characterized the specificity of GST isozymes in the formation of PGF2 alpha.  相似文献   

19.
The complete primary structures of two distinct rabbit alpha-class glutathione S-transferase (GST) subunits, rbGST alpha I and rbGST alpha II, have been derived from cDNA sequences. Clones encoding rbGST alpha I were isolated from both hepatic and pulmonary cDNA libraries, whereas clones encoding rbGST alpha II were isolated only from the hepatic library. Immunochemical and peptide sequence data confirmed that rbGST alpha I corresponds to the 27-kDa alpha-class subunit purified from rabbit lung (Serabjit-Singh, C. J., and Bend, J. R. (1988) Arch. Bioch. Biophys. 267, 184-194). Expression of rbGST alpha II in liver but not in lung and expression of rbGST alpha I in both liver and lung was substantiated by Northern and immunochemical analyses. rbGST alpha I and rbGST alpha II are composed of 223 and 221 amino acids, respectively, and are 78% identical in amino acid sequence. Compared to published GST sequences, both proteins are most closely related to the human Ha subunit (greater than 80% identity). On the basis of sequence comparison and Northern and Southern analyses, we conclude that rbGST alpha I and rbGST alpha II are products of different genes that are independently regulated. Further, the regulatory elements of the alpha-class GST genes may be significantly different in the rabbit as compared to the rat, as evidenced by the lack of induction by phenobarbital of rabbit hepatic or pulmonary alpha-class GST subunits, enzymatic activity, or mRNA. This tissue- and species-dependent expression of the predominant class of cytosolic GST implies unique functions for each isozyme and may contribute to the differential susceptibility of tissues and animals to toxicants.  相似文献   

20.
The gamma-subunit of retinal rod-outer-segment phosphodiesterase (PDE-gamma) is a multifunctional protein which interacts directly with both of the catalytic subunits of PDE (PDE alpha/beta) and the alpha-subunit of the retinal G (guanine-nucleotide-binding)-protein transducin alpha (T alpha). We have previously reported that the PDE gamma binds to T alpha at residue nos. 24-45 [Morrison. Rider & Takemoto (1987) FEBS Lett. 222, 266-270]. In vitro this results in inhibition of T alpha GTP/GDP exchange [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. We now report that the inhibitory region of PDE gamma for PDE alpha/beta occurs at PDE gamma residues 54-87. This binding results in inhibition of either trypsin-solubilized or membrane-bound PDE alpha/beta. PDE gamma which has been treated with carboxypeptidase Y, removing the C-terminus, does not inhibit PDE alpha/beta, but does inhibit T alpha GTP/GDP exchange. Inhibition by PDE gamma can be removed by T alpha-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) addition to membranes. This results in a displacement of PDE gamma, but not in removal of this subunit from the membrane [Whalen, Bitensky & Takemoto (1990) Biochem. J. 265, 655-658]. These results suggest that low levels of T alpha-GTP[S] can result in displacement of PDE gamma from the membrane in vitro as a GTP[S]-T alpha-PDE gamma complex. Further activation by high levels of T alpha-GTP[S] occurs by displacement of PDE gamma from its inhibitory site on PDE alpha/beta, but not in removal from the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号