首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have identified PRDM9, a zinc finger (ZF) protein, as a key regulator of meiotic recombination. As both recurrent genomic disorders and chromosomal non-disjunction are known to be associated with specific unusual patterns of recombination, we hypothesized a possible link between PRDM9 ZF variation and susceptibility to microdeletion syndromes and/or trisomy. We sequenced the PRDM9 ZF domain in 271 parents of patients with de novo microdeletions of known parental origin (velocardiofacial syndrome, the 17q21.31 microdeletion syndrome, Prader-Willi/Angelman syndrome and Williams-Beuren syndrome), and in 61 parents of individuals with a supernumerary X chromosome. We compared PRDM9 ZF genotype frequencies between parents in whose germ line the de novo rearrangement occurred and their spouses. We observed a significantly increased frequency (p?=?0.006) of PRDM9 variants in parents who transmitted de novo 7q11.23 deletions to their offspring. These data suggest that certain PRDM9 alleles may be associated with an increased susceptibility to recurrent 7q11.23 microdeletions that cause Williams-Beuren syndrome. However, as the majority of parents who transmitted a de novo microdeletion/supernumerary X chromosome to their offspring have the common AA genotype, we conclude that none of the rearrangements we have studied are dependent on specific non-A PRDM9 alleles.  相似文献   

2.
The inheritance of the equine Tf F3 allele was examined in 39 parent-offspring combinations. For 26 of the cases the allele inherited by the offspring from the heterozygous parent could be determined. The proportion of individuals that inherited the F3 variant compared to the alternative allele was exactly 1:1. In five cases the parental phenotype was identical to that of the offspring. For the remaining eight cases the parent was homozygous for the F3 allele and all offspring had the F3 allele. The results were consistent with Mendelian inheritance.  相似文献   

3.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by deletion of most copies of the 3.3-kb subtelomeric D4Z4 repeat array on chromosome 4q. The molecular mechanisms behind the deletion and the high proportion of new mutations have remained elusive. We surveyed 35 de novo FSHD families and found somatic mosaicism in 40% of cases, in either the patient or an asymptomatic parent. Mosaic males were typically affected; mosaic females were more often the unaffected parent of a nonmosaic de novo patient. A genotypic-severity score, composed of the residual repeat size and the degree of somatic mosaicism, yields a consistent relationship with severity and age at onset of disease. Mosaic females had a higher proportion of somatic mosaicism than did mosaic males. The repeat deletion is significantly enhanced by supernumerary homologous repeat arrays. In 10% of normal chromosomes, 4-type repeat arrays are present on chromosome 10. In mosaic individuals, 4-type repeats on chromosome 10 are almost five times more frequent. The reverse configuration, also 10% in normal chromosomes, was not found, indicating that mutations may arise from transchromosomal interaction, to which the increase in 4-type repeat clusters is a predisposing factor. The somatic mosaicism suggests a mainly mitotic origin; mitotic interchromosomal gene conversion or translocation between fully homologous 4-type repeat arrays may be a major mechanism for FSHD mutations.  相似文献   

4.
In this paper I suggest that a vastly higher rate of de novo mutations in males than in females would explain some, if not most, X-linked dominant disorders associated with a low incidence of affected males. It is the inclusion of the impact of a high ratio of male:female de novo germ-line mutations that makes this model new and unique. Specifically, it is concluded that, if an X-linked disorder results in a dominant phenotype with a significant reproductive disadvantage (genetic lethality), affected females will, in virtually all cases, arise from de novo germ-line mutations inherited from their fathers rather than from their mothers. Under this hypothesis, the absence of affected males is explained by the simple fact that sons do not inherit their X chromosome (normal or abnormal) from their fathers. Because females who are heterozygous for a dominant disorder will be clinically affected and will, in most cases, either be infertile or lack reproductive opportunities, the mutant gene will not be transmitted by them to the next generation (i.e., it will be a genetic lethal). This, not gestational lethality in males, may explain the absence of affected males in most, if not all, of the 13 known X-linked dominant diseases characterized by high ratios of affected female to male individuals. Evidence suggesting that this mechanism could explain the findings in the Rett syndrome is reviewed in detail.  相似文献   

5.
Familial ring (20) chromosomal mosaicism   总被引:2,自引:2,他引:0  
Summary Ring (20) chromosomal mosaicism defined by two cell lines (one normal and the other with the ring) has been demonstrated in lymphocyte and fibroblast cultures from three members of a family through two generations. Two carriers of the ring chromosome were affected and showed the typical signs of r(20) syndrome including mental retardation, microcephaly, behavioral disorders, and epilepsy. The epilepsy is characterized by complex partial seizures sometimes evolving secondarily into generalized tonic-clonic seizures and is poorly controlled by or resistant to medical treatment. The mother of the two patients, also a carrier of ring (20) chromosomal mosaicism, was clinically and phenotypically normal and did not exhibit any signs of epilepsy. Lymphocyte and fibroblast cultures from the most severely affected sib, the proband, contained the highest percentage of cells with ring (20) chromosome and revealed the greatest instability of the ring. Though it is assumed that the ring (20) chromosome arose from terminal breakage and reunion in both arms, no loss of genetic material could be documented cytogenetically. Yet the question arises of how ring chromosomal mosaicism can be passed on. One explanation might be that a chromosome 20 predisposed to terminal lesions or breaks is transmitted from the mother to her offspring. Inherited instability of this type might lead to de novo formation of the ring.  相似文献   

6.
Summary A fragile site at the long arms (q21) of chromosome 16 was found in two persons, each of whom became the parent of a child with a de novo structural chromosome abnormality—a balanced autosomal translocation and an autosomal deletion. The question of an increased risk of structural chromosome abnormalities in the offspring of persons with fragile site long arm 16 is discussed.  相似文献   

7.
We report two prenatal and two postnatal diagnosed cases (the latter monozygotic twins) with ring chromosomes after GTG banding. All four, de novo r(18), cases turned out to be more complex after application of high-resolution molecular cytogenetics techniques such as use of fluorescence in situ hybridization, centromeric probes, multicolor banding, and locus-specific probes for chromosome 18. All four cases are mosaics involving chromosome 18 in up to five different cell lines, including 46,r(18); 46,dr(18); 47,r(18)x2; 46,mar(18); and 45,-18. Mosaicism sharing both numerical and structural anomalies is rare, but rings often appear as mosaics due to their mitotic instability. Overall, patients with ring chromosome 18 usually share clinical features of 18q- syndrome and, less frequently, those of 18p- syndrome. High-resolution molecular cytogenetics techniques were useful in the characterization of cases with dynamic mosaicism and in establishing the relationship between loss or gain of chromosomal material and the phenotype.  相似文献   

8.
Copy-number variations cause genomic disorders. Triplications, unlike deletions and duplications, are poorly understood because of challenges in molecular identification, the choice of a proper model system for study, and awareness of their phenotypic consequences. We investigated the genomic disorder Charcot-Marie-Tooth disease type 1A (CMT1A), a dominant peripheral neuropathy caused by a 1.4 Mb recurrent duplication occurring by nonallelic homologous recombination. We identified CMT1A triplications in families in which the duplication segregates. The triplications arose de novo from maternally transmitted duplications and caused a more severe distal symmetric polyneuropathy phenotype. The recombination that generated the triplication occurred between sister chromatids on the duplication-bearing chromosome and could accompany gene conversions with the homologous chromosome. Diagnostic testing for CMT1A (n = 20,661 individuals) identified 13% (n = 2,752 individuals) with duplication and 0.024% (n = 5 individuals) with segmental tetrasomy, suggesting that triplications emerge from duplications at a rate as high as ∼1:550, which is more frequent than the rate of de novo duplication. We propose that individuals with duplications are predisposed to acquiring triplications and that the population prevalence of triplication is underascertained.  相似文献   

9.
De novo mutations are recognized both as an important source of genetic variation and as a prominent cause of sporadic disease in humans. Mutations identified as de novo are generally assumed to have occurred during gametogenesis and, consequently, to be present as germline events in an individual. Because Sanger sequencing does not provide the sensitivity to reliably distinguish somatic from germline mutations, the proportion of de novo mutations that occur somatically rather than in the germline remains largely unknown. To determine the contribution of post-zygotic events to de novo mutations, we analyzed a set of 107 de novo mutations in 50 parent-offspring trios. Using four different sequencing techniques, we found that 7 (6.5%) of these presumed germline de novo mutations were in fact present as mosaic mutations in the blood of the offspring and were therefore likely to have occurred post-zygotically. Furthermore, genome-wide analysis of de novo variants in the proband led to the identification of 4/4,081 variants that were also detectable in the blood of one of the parents, implying parental mosaicism as the origin of these variants. Thus, our results show that an important fraction of de novo mutations presumed to be germline in fact occurred either post-zygotically in the offspring or were inherited as a consequence of low-level mosaicism in one of the parents.  相似文献   

10.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominantly inherited neuromuscular disorder affecting facial and shoulder girdle muscles with subsequent progression to the pelvic girdle and lower extremities. The major gene involved has been localized to chromosome 4q35 (FSHD1A). The 4q35 DNA marker p13E-11 (D4F104S1) detects a de novo EcoRI DNA rearrangement of < 30 kb in isolated and familial cases. The intrafamilial size of the fragment is constant, inversely correlated with the severity, and directly correlated with the age of onset of the condition. There has been evidence of parental mosaicism in FSHD1A for the D4F104S1 locus. Four female and three male clinically unaffected parents have been described to be carriers of EcoRI fragments of the same size as their affected offspring, but with a markedly less intensive hybridization signal (semi-quantitative evidence). In our total sample of 42 FSHD1A families, we found semi-quantitative evidence of parental D4F104S1 mosaicism in 11 families (EcoRI fragment size range: 12–27 kb). On analysis with adjacent 4q35 probes (D4S163, D4S139), additional qualitative evidence of germline mosaicism could be obtained in two families. In our mosaic families and in the families reported in the literature, a female predominance of mosaicism carriers (13 females versus 5 males) could be noted. In our sample, mosaicism was observed in multigeneration families, in families with isolated cases, and in families with two and three affected children from seemingly unaffected parents. A short EcoRI fragment once having emerged in a mosaicism carrier was found to be transmitted autosomal dominantly to subsequent generations. Of all reported sporadic patients, 19% have a mosaic parent. Finding evidence of parental mosaicism in all our families with more than one affected child of seemingly unaffected parents suggests that there is no autosomal recessively inherited form of FSHD1A. Received: 5 March 1996 / Revised: 14 May 1996  相似文献   

11.
12.
These data have been collected from St. Petersburg Down Syndrome Register that comprises information on 1778 liveborn children with the Down syndrome, including three twin sets, ascertained within 1970-1996. Karyotypes were obtained in 1223 cases, of which 1119 (90.7%) displayed regular trisomy. Mosaicism was found in 44 cases (3.6%), including 21 males and 24 females, and among these one familial case of mosaicism in a daughter and in a healthy mother. Of 70 cases of translocations, 41(5.7%) were Robertsonian D ones. 21 (17 inherited, 16 de novo and 8 of unknown origin), 28 translocations of isochromosomes 21q; 21q (1 inherited translocation 21; 22, 22 de novo and 5 of unknown origin). One child received the anomaly from his 46XX/45XX, t(D;G) mother-carrier. In 6 cases, free trisomy 21 was associated with structural or numerical anomalies: 46XY,t(13;14)mat + 21 in twins, 47XY,t(C;C) + 21, 47XY,t(10;15)pat + 21, 47XY,inv(19)mat + 21, 47XX + 21/48XX + 21 + ring, 48XXX + 21. In 12 families parental mosaicism was shown or suspected. In 6 families one parent had chromosome anomaly, in three cases it was not inherited: t(15;22) and t(6;21) in mothers and an additional small marker in a father. In cases confirmed cytogenetically an increased sex ratio was shown (679 males and 551 females, SR = 1.23), but it was not shown in patients not tested cytogenetically (264 males and 275 females, SR = 0.96, different from the expected 297 males and 242 females, P < 0.01).  相似文献   

13.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

14.
Among 1332 cases of trisomy 21 born within 1979-1999 in St. Petersburg, 76(5.7%) were carriers of a translocation between chromosome 21 and other acrocentrics. Among 43 Dq; 21q translocations, 17 were inherited from the mother, and one was inherited from the father, 16 were of sporadic occurrence, and in 9 cases the mode of inheritance was not established. Out of 31 cases displaying Gq;21 translocation, 23 were mutants and 8 of unknown origin. One case of non-Robertsonian translocation 21;22 was maternal in origin. It was assumed that the proportion of sporadic cases among translocations of unknown origin is the same as that among translocations of the known origin. However, it is conceivable that the parents of a child with a sporadic anomaly, previously having an uncomplicated reproductive history and healthy children, tend to avoid cytogenetic examination more often than the carriers of translocation. Hence, the reported proportion of de novo cases (-0.6) might be underestimated. The analysis of pregnancy outcomes in mothers of children with Down syndrome, who inherited translocation (n = 12), sporadic translocation (n = 12) and translocation of unknown origin (n = 8), supports this suggestion. Analysis of the data from 8 reports, where the origin of Dq;21 was specified, revealed that in those samples, where the origin was traced in almost all families, the proportion of de novo cases (0.75-0.82) was higher than in samples where an appreciable part of families was not examined (0.46-0.73). Therefore, with the aim of correct determination of mutation rate for Dq;21 translocation, the true proportions in D;21 cases merit evaluation. Meanwhile, using average estimation from all the above mentioned reports (0.67), the mutation rate for translocations Dq;21 in St. Petersburg was calculated to be 1.2 x 10(-5) and 0.8 x 10(-5) in 1980-1989 and 1990-1999, respectively. For Gq;21 translocations/isochromosomes, the corresponding figures were 1.6 x 10(-5) and 1.5 x 10(-5).  相似文献   

15.
A genetic model for age at onset in Huntington disease.   总被引:19,自引:8,他引:11       下载免费PDF全文
Although numerous investigators have confirmed excess paternal transmission among juvenile-onset cases of Huntington disease (HD), there are conflicting reports that the late-onset form is inherited more often from the mother than from the father. Results from a survey of age at onset and age at death in 569 patients corroborate earlier findings of delayed onset of HD among offspring of affected mothers at both ends of the onset-age spectrum: 23 of 28 juvenile-onset offspring had affected fathers, and there were 1.6 times more late-onset offspring born to affected mothers than to affected fathers. These patterns, together with data that link age-at-onset variability to familial longevity trends, suggest a model where age at onset is governed, generally, by a set of independently inherited aging genes, but expression of the HD gene may be significantly delayed in individuals who possess a particular maternally transmitted factor.  相似文献   

16.
Thirteen new cases of accessory bisatellited marker chromosomes were found among 20,370 amniocentesis. Six of these were familial, six originated de novo and in one case the origin of marker chromosome remained unknown. Eleven cases were carried to term and follow up studies revealed no abnormality. In two cases the pregnancies were terminated and the pathological examination revealed apparently normal fetuses. A cytogenetic categorization of bisatellited marker chromosomes is described. The available data show clearly that there is no increased risk for offspring with abnormal phenotype born to a healthy carrier of an accessory bisatellited marker chromosome with either a single or two closely adjacent C-bands (category AI or AII). The unbiased sample of cases with de novo accessory bisatellited marker chromosomes of category AI or AII is still too small to allow a satisfactory estimation. However, the actual risk for a fetus to be affected may be low too.  相似文献   

17.
One t(14q14q), three t(15q15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange.  相似文献   

18.
Parent-of-origin effects in multiple endocrine neoplasia type 2B.   总被引:7,自引:2,他引:5       下载免费PDF全文
Multiple endocrine neoplasia type 2B (MEN 2B) is characterized by medullary thyroid carcinoma, pheochromocytomas, mucosal neuromas, ganglioneuromas, and skeletal and ophthalmic abnormalities. It is observed as both inherited and sporadic disease, with an estimated 50% of cases arising de novo. A single point mutation in the catalytic core region of the receptor tyrosine kinase, RET, has been observed in germ-line DNA of MEN 2B patients. We have analyzed 25 cases of de novo disease in order to determine the parental origin of the mutated RET allele. In all cases the new mutation was of paternal origin. We observe a distortion of the sex ratio in both de novo MEN 2B patients and the affected offspring of MEN 2B transmitting males. These results suggests a differential susceptibility of RET to mutation in paternally and maternally derived DNA and a possible role for imprinting of RET during development.  相似文献   

19.
The ring chromosome 13 syndrome   总被引:3,自引:0,他引:3  
Summary A study of the ring chromosome 13 syndrome is presented with detailed clinical and cytogenetic features of three new unrelated cases. The clinical limits of this syndrome can now be defined. An analysis of these cases together with those in the literature indicates that the syndrome forms a continuous spectrum, and no further taxonomic subdivision is possible at this stage of knowledge. The chromosome breakpoints in the first two cases are 13p11 and 13q32 and in the third case 13p11 and 13q33 or 13q34. All described cases of the ring 13 syndrome have breakpoints within the region bounded by bands 13q21 to 13q34. All rings are negative for silver banding. Peripheral blood cultures showed an average of 88% of metaphases to be 46.XX,r(13), with the remaining 12% manifesting either random loss or ring duplication. The rings vary in size and show a variable number of centromeres. An estimate of the birth incidence of this condition in the Anglo-Saxon population is 1 in 58,000. Parents of affected children are clincally and cytogenetically normal, the rings in affected offspring being meiotic in origin.  相似文献   

20.
Down syndrome is rarely due to a de novo Robertsonian translocation t(14q;21q). DNA polymorphisms in eight families with Down syndrome due to de novo t(14q;21q) demonstrated maternal origin of the extra chromosome 21q in all cases. In seven nonmosaic cases the DNA markers showed crossing-over between two maternal chromosomes 21, and in one mosaic case no crossing-over was observed (this case was probably due to an early postzygotic nondisjunction). In the majority of cases (five of six informative families) the proximal marker D21S120 was reduced to homozygosity in the offspring with trisomy 21. The data can be best explained by chromatid translocation in meiosis I and by normal crossover and segregation in meiosis I and meiosis II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号