首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单颗粒电子显微学是一种新型的结构生物学技术和方法,一方面,其解析生物大分子复合体结构的分辨率日益提高,可以达到近原子分辨率,提供大蛋白分子或复合体的精细结构;另一方面,还可以解析生物大分子在不同功能状态下的结构及变化,对于揭示生物大分子复合体结构的作用机理具有重要作用。本文就单颗粒电子显微学的研究进展作一综述。  相似文献   

2.
The dynactin complex interacts with dynein and numerous other proteins to provide for a wide range of subcellular transport functions. A detailed understanding of the structure and subunit organization of dynactin should yield new insights into its function. In the present study, we used single particle analysis to obtain a two-dimensional averaged image of dynactin isolated from chick embryo brains and visualized by negative stain electron microscopy (EM). Each individual image, consisting of the shoulder/sidearm and the rod, closely resembled the previously published quick-freeze deep-etch rotary-shadow electron micrographs. However, the averaged image revealed novel structural features that may have functional significance. The bulky shoulder complex has a triangular shape and is 13 nm wide and 8 nm high. The rod, with an overall length of 40 nm, consists of clearly defined lobes that are apparently grouped into three parts, the pointed-end complex, the middle segment, and the extra lobes at the barbed end. The pointed-end complex reveals the characteristic protrusions and clefts that were previously observed only in the isolated pointed-end complex. In the middle segment, the seven lobes are fitted to the helical symmetry of F-actin. A narrow but prominent gap separates the previously unidentified extra three lobes at the barbed end from the middle segment. The averaged image we obtained contrasts dramatically with the simple Arp1 polymer that was previously reported by single particle analysis of bovine brain dynactin. These apparent structural differences are probably due to the greater stability and integrity of the chick embryo brain dynactin preparation. We propose a new structural model for dynactin, based on our observations.  相似文献   

3.
4.
5.
BACKGROUND: In the past few years, computer-based analysis of atomic-force microscopic images has acquired increasing importance for studying biomolecules such as DNA. On the one hand, fully automated methods do not allow analysis of complex shapes; on the other hand, manual methods are usually time consuming and inaccurate. The semiautomated approach presented in this report overcomes the drawbacks of both methods. METHODS: Two kinds of images were analyzed: computer-generated filaments that modeled circular DNA molecules on a surface and real atomic-force microscopic images of DNA molecules adsorbed on an appropriate substrate surface. RESULTS: The algorithm was tested on a group of 140 simulated and 189 real plasmids with a nominal length of 913 nm. The accuracy of the length measurement was statistically evaluated on the ensemble of molecules, with particular attention to the influence of the noise. Mean contour lengths of 912 +/- 5 nm and 910 +/- 47 nm were found for simulated and real plasmids, respectively. The measured end-to-end distance of lambda-DNA molecules as a function of their contour length is reported, from which it is possible to estimate the stiffness of the DNA molecules adsorbed onto a surface; the value obtained for the DNA persistence length (42 +/- 5 nm) is consistent with values measured by other imaging techniques. CONCLUSIONS: An interactive algorithm for DNA molecule measurements based on the detection of the filament ridge line in a digitized image is presented. The simulation of artificial filaments combined with the experimental data demonstrates that the proposed method can be a valuable tool for the DNA contour length evaluation, especially in the case of complex shapes where the use of automatic methods is not possible.  相似文献   

6.
The spliceosome is a multimegadalton RNA-protein machine that removes noncoding sequences from nascent pre-mRNAs. Recruitment of the spliceosome to splice sites and subsequent splicing require a series of dynamic interactions among the spliceosome's component U snRNPs and many additional protein factors. These dynamics present several challenges for structural analyses, including purification of stable complexes to compositional homogeneity and assessment of conformational heterogeneity. We have isolated spliceosomes arrested before the second chemical step of splicing (C complex) in which U2, U5 and U6 snRNAs are stably associated. Using electron microscopy, we obtained images of C complex spliceosomes under cryogenic conditions and determined a three-dimensional structure of a core complex to a resolution of 30 A. The structure reveals a particle of dimensions 27 x 22 x 24 nm with a relatively open arrangement of three primary domains.  相似文献   

7.
8.
Selection of particle images from electron micrographs presents a bottleneck in determining the structures of macromolecular assemblies by single particle electron cryomicroscopy (cryo-EM). The problem is particularly important when an experimentalist wants to improve the resolution of a 3D map by increasing by tens or hundreds of thousands of images the size of the dataset used for calculating the map. Although several existing methods for automatic particle image selection work well for large protein complexes that produce high-contrast images, it is well known in the cryo-EM community that small complexes that give low-contrast images are often refractory to existing automated particle image selection schemes. Here we develop a method for partially-automated particle image selection when an initial 3D map of the protein under investigation is already available. Candidate particle images are selected from micrographs by template matching with template images derived from projections of the existing 3D map. The candidate particle images are then used to train a support vector machine, which classifies the candidates as particle images or non-particle images. In a final step in the analysis, the selected particle images are subjected to projection matching against the initial 3D map, with the correlation coefficient between the particle image and the best matching map projection used to assess the reliability of the particle image. We show that this approach is able to rapidly select particle images from micrographs of a rotary ATPase, a type of membrane protein complex involved in many aspects of biology.  相似文献   

9.
Three-dimensional structure determination of macromolecules and macromolecular complexes is an integral part of understanding biological functions. For large protein and macromolecular complexes structure determination is often performed using electron cryomicroscopy where projection images of individual macromolecular complexes are combined to produce a three-dimensional reconstruction. Single particle methods have been devised to perform this structure determination for macromolecular complexes with little or no underlying symmetry. These computational methods generally involve an iterative process of aligning unique views of the macromolecular images followed by determination of the angular components that define those views. In this review, this structure determination process is described with the aim of clarifying a seemingly complex structural method.  相似文献   

10.
N Binsted  R W Strange  S S Hasnain 《Biochemistry》1992,31(48):12117-12125
This paper describes methods of constrained and restrained refinement of EXAFS data which provide a means of substantially reducing the number of independent parameters compared to conventional least-squares methods commonly used. Constrained refinement allows a major reduction in the number of free parameters for a refinement of a structural model. In restrained refinement, additional structural information from well-characterized small molecules is used to provide additional observations in the data analysis. Even though these methods are of general application to the majority of complex systems, they are particularly valuable for biological molecules. The methods are of major advantage for ligands where significant multiple scattering is present, e.g., histidine, tyrosine, CO, CN, etc. The bases of these methods are described, and applications to some complex chemical and biological systems are given.  相似文献   

11.
Several examples will be described in which powerful separation methods are combined with relatively simple chemical modification techniques to provide structural information on complex macromolecular assemblies. Ribosomal RNA structure has been examined by crosslinking, separating individual crosslinked species by gel electrophoresis, and enzymatic methods for determination of crosslink positions in the nucleotide sequence. Chromatin structure has been examined by footprinting the location of individual nucleosomes by a combination of chemical nicking and DNA separations. Virus structure can be examined by using breakable crosslinkers analyzed with diagonal gel electrophoresis. Ultimately such methods may allow structural information to be obtained on systems even as complex as whole chromosomes.  相似文献   

12.
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.  相似文献   

13.
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.  相似文献   

14.
Jiang S  Wolfe CL  Warrington JA  Norcum MT 《FEBS letters》2005,579(27):6049-6054
Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components.  相似文献   

15.
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three‐dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force‐distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F‐actin bundles are stiffer than surrounding F‐actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

16.
The application of single particle techniques to the three-dimensional analysis of electron microscope images of elongated or filamentous macromolecular assemblies is evaluated, taking as an example the muscle thin filament. Although the thin filament contains local helical symmetry, because of the inherent variable twist along it, the helical coherence does not extend for large enough distances to allow the symmetry to be used for full reconstruction of the tropomyosin/troponin repeat along the filament. The muscle thin filament therefore represents a general case of a filamentous object in that it is not possible to exploit symmetry in a full analysis. Due to the nature of the imaging process in the electron microscope, only projections of the thin filament around its long axis are available without tilting the grid. Crucially, projection images around a single axis do not provide enough information to assign Euler angles ab initio using current methods. Tests with a model thin filament structure indicated that an out-of-plane tilt of approximately 20 degrees was needed for ab initio angular assignment of sufficient accuracy to calculate a 3D structure to a resolution of approximately 25 A. If no out-of-plane views are available, an alternative approach is to use a prior 3D model as a reference for the initial angle assignment. Tests with the thin filament model indicated that reasonably accurate angular assignment can be made using a reference containing actin, but lacking the regulatory proteins tropomyosin and troponin. We also found that an adaptation of the exact filtered back projection method is required to allow the correct weighting of projection images in which the particle has a very large axial ratio. This adaptation resulted in significant improvements in the reconstruction.  相似文献   

17.
Neutron scatter and diffraction techniques have made substantial contributions to our understanding of the structure of the nucleosome, the structure of the 10-nm filament, the "10-nm----30-nm" filament transition, and the structure of the "34-nm" supercoil or solenoid of nucleosomes. Neutron techniques are unique in their properties, which allows for the separation of the spatial arrangements of histones and DNA in nucleosomes and chromatin. They have equally powerful applications in structural studies of any complex two-component biological system. A major success for the application of neutron techniques was the first clear proof that DNA was located on the outside of the histone octamer in the core particle. A full analysis of the neutron-scatter data gave the parameters of Table 3 and the low-resolution structure of the core particle in solution shown in Fig. 6. Initial low-resolution X-ray diffraction studies of core particle crystals gave a model with a lower DNA pitch of 2.7 nm. Higher-resolution X-ray diffraction studies now give a structure with a DNA pitch of 3.0 nm and a hole of 0.8 nm along the axis of the DNA supercoil. The neutron-scatter solution structure and the X-ray crystal structure of the core particle are thus in full agreement within the resolution of the neutron-scatter techniques. The model for the chromatosome is largely based on the structural parameters of the DNA supercoil in the core particle, nuclease digestion results showing protection of a 168-bp DNA length by histone H1 and H1 peptide, and the conformational properties of H1. The path of the DNA outside the chromatosome is not known, and this information is crucial for our understanding of higher chromatin structure. The interactions of the flexible basic and N- and C-terminal regions of H1 within chromatin and how these interactions are modulated by H1 phosphorylation are not known. The N- and C-terminal regions of H1 represent a new type of protein behavior, i.e., extensive protein domains that are designed not to fold up into secondary and tertiary protein structures. This behavior is increasingly observed in DNA and chromatin binding proteins, and in the case of the high-mobility group proteins HMG 14 and 17, the entire polypeptide chain is a flexible random coil over a wide range of solution, ionic, and pH conditions. It follows that the native conformations are probably imposed on these flexible domains and molecules by their binding sites in chromatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Quantitative observation of nerve fiber sections is often complemented by morphological analysis in both research and clinical condition. However, existing manual or semi-automated methods are tedious and labour intensive, fully automated morphometry methods are complicated as the information of color or gray images captured by traditional microscopy is limited. Moreover, most of the methods are time-consuming as the nerve sections need to be stained with some reagents before observation. To overcome these shortcomings, a molecular hyperspectral imaging system is developed and used to observe the spinal nerve sections. The molecular hyperspectral images contain both the structural and biochemical information of spinal nerve sections which is very useful for automatic identification and quantitative morphological analysis of nerve fibers. This characteristic makes it possible for researchers to observe the unstained spinal nerve and live cells in their native environment. To evaluate the performance of the new method, the molecular hyperspectral images were captured and the improved spectral angle mapper algorithm was proposed and used to segment the myelin contours. Then the morphological parameters such as myelin thickness and myelin area were calculated and evaluated. With these morphological parameters, the three dimension surface view images were drawn to help the investigators observe spinal nerve at different angles. The experiment results show that the hyperspectral based method has the potential to identify the spinal nerve more accurate than the traditional method as the new method contains both the spectral and spatial information of nerve sections.  相似文献   

20.
Metal replicas have been used for surface analysis of biological structures with a variety of spatial resolutions. Platinum (Pt) has been the metal of choice because it provides very stable replicas and images of high contrast. Some other metals, such as tantalum (Ta) have been reported to provide better resolution on isolated macromolecular complexes and cellular structures. Our goal is to study the gain in detail with Ta and to evaluate if it provides enough detail and resolution to assist in the study of complex volumes of intact cellular structures obtained by methods that reach molecular resolution. To this purpose Pt and Ta replicas of cellular structures and viruses have been studied by transmission electron microscopy (TEM). Replicas of Ta show new details on the surface of two types of isolated viral particles such as 100 nm bunyaviruses and large, > 300 nm, vaccinia virus (VV). Inside cells, the structural pieces that build VV immature particles are visualized only in Ta replicas. Looking for smaller intracellular complexes, new details are also seen in nuclear pores from Ta replicas. Additional masses, most likely representing the cargo during transport, are distinguished in some of the pores. Visualization of proteins in plasma membranes strongly suggests that detail and resolution of Ta replicas are similar to those estimated for 3D maps currently obtained by electron tomography of viruses and cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号