首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally induced order-disorder conformational transition in succinoglycan was studied using the method of high-sensitivity differential scanning microcalorimetry within the range of polysaccharide concentrations from 0.1 to 3.5 mg mL−1 at NaCl concentrations 0, 0.01, and 0.1M. The positions and shapes of the excess heat capacity curves depended substantially on both the NaCl and polysaccharide concentrations. At low polysaccharide concentrations in salt-free solution the experimental curves were closely approximated by the two-state model suggesting the transition mechanism to be of the single helix-coil type. With increasing polysaccharide and/or NaCl concentration, the experimental curves changed significantly in symmetry, which indicated a changing transition mechanism. At high polysaccharide concentrations or in the presence of the salt, the order-disorder transition of succinoglycan was shown to include two stages: the cooperative dissociation of the helix dimer and subsequent two-state melting of the helix monomer. The dependence of thermodynamic parameters for the dissociation and melting of helix structures in succinoglycan on NaCl and polysaccharide concentrations was obtained by fitting the experimental excess heat capacity curves. The cooperativity parameter σ for the single helix-coil transition as well as the average length of the helix segment of succinoglycan were calculated. Some features of succinoglycan ordering in solution are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The order to disorder transition of xanthan molecules in aqueous solutions has been studied using e.s.r. spectroscopy. Nitroxide spin-label was covalently attached to carboxyl groups on the xanthan side chains. The e.s.r. spectra obtained for aqueous spin-labelled xanthan solutions at varying ionic strengths contained both isotropic and anisotropic components at room temperature. The anisotropic component was attributed to the association of the side chains with the xanthan cellulosic backbone and was found to be present in greater proportions at increasing ionic strength. The spectra gradually changed with rising temperature and the proportion of anisotropic component decreased. This spectral change reflected the disruption of the side chain association with the backbone during the conformational change. Hysteresis effects were observed following sequential heating and cooling cycles suggesting that chain aggregation occurred.  相似文献   

3.
4.
The conductivity of xanthan (extracellular polysaccharide from Xanthomonas campestris) in the potassium salt form has been studied over the temperature range 5–80°C spanning the order-disorder conformational transition. In salt-free solution data analysis using Manning's polyelectrolyte-conductivity theory gives a charge spacing, b, of 0.58±0.04 nm for the low temperature ordered form, consistent with a single rather than a double helix (b=0.58 and 0.29 nm respectively). In solutions with 0.01 M added KBr the increase in counterion condensation on conformational ordering is found from conductivity studies to be — –1= 0.20 ± 0.02, in good agreement with the value 0.20±0.02 using polyelectrolyte-equilibrium theory for the variation of transition-midpoint temperature with added salt determined from opticalrotation data.  相似文献   

5.
S Kitamura  K Takeo  T Kuge  B T Stokke 《Biopolymers》1991,31(11):1243-1255
The thermally induced conformational transition of double-stranded xanthans (degree of pyruvate substitution, DSp = 0.45) having Mw = 3.1, 5.7, and 20.3 x 10(5) has been studied in aqueous salt solutions by high-sensitivity differential scanning calorimetry (DSC). The double strandedness of these samples in the ordered conformation was ascertained by the value of mass per unit length, ML = 2090 +/- 270 g mol-1 nm-1, which was determined from the contour length obtained by electron microscopic observations and the molecular weight by light scattering measurements. The temperature at half completion of the transition T 1/2 for these samples increased linearly with the logarithm of the cation (Na+, K+) concentration. The plot of 1/T1/2 vs the natural logarithm of cation (Na+) concentration in mM for the sample with Mw = 5.7 x 10(5) (15-SX) yielded the equation 10(3)/T1/2 = 3.45-0.159 ln [Na+]. The specific enthalpy delta hcal for 15-SX, essentially independent of salt concentration above 20 mM, was 8.31 +/- 0.39 J/g (SD, n = 6). No systematic dependence of molecular weight on the transition temperature and the enthalpy was observed. Application of the Manning polyelectrolyte theory to the system using the DSC data suggested that the separation of the double strand of xanthan into two single chains was not completed at the temperature where the endothermic peak was finished. This suggestion is consistent with recent findings by light scattering measurements as a function of temperature. Our DSC study was extended to include four other samples from various sources. It was found that T1/2 and delta hcal depend on the pyruvate contents of the samples. For example, the t1/2 (t1/2/degrees C = T1/2/K - 237.15) values for samples with high pyruvate content (DSp = 0.9) and depyruvated (DSp = 0.14) in 20 mM aqueous NaCl were 48.8 and 85.3 degrees C, respectively. Two other samples showed relatively broad DSC curves having shoulders, which were resolved into two independent components. Thermodynamic parameters for each component were examined as a function of salt concentration, and the results obtained were interpreted in terms of the heterogeneity of the pyruvate content of the samples.  相似文献   

6.
黄原胶发酵液纯化精制研究   总被引:3,自引:0,他引:3  
溶剂法直接提取的黄原胶产品含有大量菌体蛋白和色素杂质,总氮含量高、透明度差、色泽暗深。通过中性蛋白酶处理发酵液,使成品含氮量下降56.5%;通过Na2SO3漂白液,使产品色泽大为改善。实验得出最佳酶解条件:发酵液稀释1倍,温度44℃、pH7,加酶量100u/g发酵液,作用时间2.5h;最佳Na2SO3漂白条件:温度20 ̄30℃,pH5 ̄6,Na2SO3用量为1%(w/w),作用时间1 ̄1.5h。  相似文献   

7.
槐豆胶与黄原胶的协效性研究   总被引:7,自引:0,他引:7  
对槐豆胶与黄原胶的协效性进行了研究,结果表明,槐豆胶和黄原胶有较高的协效性,其最佳配比(重量比)为2:8;当混合液浓度达到0.5%-0.6%时形成凝胶,因此槐豆胶可作为黄原胶的增稠剂和凝胶剂。  相似文献   

8.
9.
Molecular diffusion of solutes, like sucrose in the xanthan gum fermentation, is important in order to understand the complex behavior of mass transfer mechanisms during the process. This work was focused to determine the diffusion coefficient of sucrose, a carbon source for xanthan production, using similar sucrose and xanthan concentrations to those occurring in a typical fermentation. The diaphragm cell method was used in experimental determinations. The data showed that diffusion coefficient of sucrose significantly decreases when xanthan gum concentration increases. Theoretical and semiempirical models were used to predict sucrose diffusivity in xanthan solutions. Molecular properties and rheological behavior of the system were considered in the modeling. The models tested fitted well the behavior of experimental data and that reported for oxygen in the same system.List of Symbols A constant in eq. (5) - C pg cm–3 polymer concentration - D cm2 s–1 diffusivity - D ABcm2 s–1 diffusivity of A through liquid solvent - D APcm2 s–1 diffusivity of A in polymer solution - D AWcm2 s–1 diffusivity of A in water - D Pcm2 s–1 diffusivity of polymer in liquid solvent - E D gradient of the activation energy for diffusion - H P hydratation factor of the polymer in water (g of bound water/g of polymer) - K dyn sn cm–2 consistency index - K 1 constant in eq. (5) - K P overall binding coefficient [g of bound solute/cm3 of solution]/[g of free solute/cm3 of polymer free solution] - n flow behavior index - M Bg g mol–1 molucular weight of liquid solvent - M Pg g mol–1 molecular weight of the polymer - M Sg g mol–1 Molecular weight of polymer solution (= M BXB+MPXP) - R cm3 atm g mol–1 K–1 ideal gas law constant - T K absolute temperature - V Bcm3 g mol–1 molar volume of liquid solvent - V Pcm3 g mol–1 molar volume of polymer - V Scm3 g mol–1 molar volume of polymer solution - X B solvent molar fraction - X P polymer molar fraction - polymer blockage shape factor - P volume fraction of polymer in polymer solution - g cm–1 s–1 viscosity - ag cm–1 s–1 apparent viscosity of the polymer solution - icm3 g–1 intrinsic viscosity - 0 g cm–1 s–1 solvent viscosity - Pg cm–1 s–1 polymer solution viscosity - R relative viscosity (= / 0) - =0 g cm–1 s–1 viscosity of polymer solution obtained at zero shear rate - 0 g cm–3 water density  相似文献   

10.
Viscoelasticity has important implications in mass transfer and mixing processes. Previous studies regarding to the viscoelastic behaviour of xanthan solutions have been carried out with diluted solutions or they have not covered a wide range of polymer concentrations. In this study, it was shown that the first normal stress difference measured in fermentation broths is highly dependent on shear rate, and this viscoelastic level is modified by the heat treatment to which the broths are subjected as a postfermentative procedure. The viscoelasticity level is different for xanthan solutions prepared with products arising from different sources and for fermentation broths before the heat treatment, if compared with that measured in end-products. In general, the higher the polymer concentration, the higher the viscoelasticity (expressed as first normal stress difference or Weissenberg number). The addition of a biocide, the change in ionic strength and the addition of sucrose to the xanthan solutions, lead to significant changes in the first normal stress difference.List of Symbols A Pa.Sb constant in first normal stress difference power law (N 1= ) - b constant in first normal stress difference power law (N 1= ) - c kg m–3 polymer concentration - K Nsn m–2 consistency index - N 1 Pa first normal stress difference - n flow behaviour index - Wi Weissenberg number,N 1/ - s–1 shear rate - Pa shear stress - y Pa Yield stress  相似文献   

11.
Processing xanthan gum by extrusion and subsequent drying produces a biopolymer showing particulate, rather than molecular behaviour in aqueous solution. This form of xanthan disperses very readily to give a viscosity that is strongly dependent on salt concentration. On heating above the temperature of the order-disorder transition as determined by calorimetry, there is a viscosity transition that is indicative of the irreversible loss of the particulate structure. It is suggested that the extrusion process melts and aligns xanthan macromolecules. On cooling reordering will occur but in the highly concentrated environment in the extruder ( approximately 45% water w/w), inter-molecular association between neighbouring macromolecules cannot proceed to completion due to kinetic trapping. As a consequence a network structure is created maintained by associations involving ordered regions. A xanthan solution can be prepared from this particulate material by dispersing and subsequent heating far more readily than can be achieved with non-processed xanthan.  相似文献   

12.
The present study aimed to study the reaction conditions of grafting of acrylamide on xanthan gum. It was analyzed the influence of reaction conditions, mainly type of initiator activation, initiator concentration and initiator/acrylamide ratio, on graft parameters and copolymer properties. Potassium persulfate was employed as an initiator and heating or N,N,N',N'-tetramethylethylenediamine was used to activate the initiator. Reaction time and initiator concentration were varied and final values for grafting percentage and grafting efficiency were the same for both methods, whereas speed in reaching these values differs from one technique to another. We found that reaction time was inversely proportional to intrinsic viscosity, likely due to main chain degradation promoted by potassium persulfate (KPS); furthermore, the increasing in the KPS concentration lowers grafting percentage, acrylamide conversion and chain degradation, possibly as a result of O(2) formation at high KPS concentrations.  相似文献   

13.
Molecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis, disordering of the mobile loops accompanies co-chaperonin dissociation, reversal of the GroEL conformational change, and release of the client protein. "High-affinity" GroEL mutants were identified by their compatibility with "low-affinity" co-chaperonin mutants and incompatibility with high-affinity co-chaperonin mutants. Analysis of binding kinetics using the intrinsic fluorescence of tryptophan-containing co-chaperonin variants revealed that excessive affinity causes the chaperonin to stall in a conformation that forms in the presence of ATP. Destabilizing the beta-hairpins formed by the mobile loops restores the normal rate of dissociation. Thus, the free energy of mobile-loop ordering and disordering acts like the inertia of an engine's flywheel by modulating the speed of chaperonin conformational changes.  相似文献   

14.
Partial acetolysis of the extracellular polysaccharide from Xanthomonas campestris gives the constituent monosaccharides, cellobiose, and three mannose-containing neutral oligosaccharides thought to be derived from the branch points of the polysaccharide. The structural analyses of these oligosaccharides provide further evidence for the presence of β-D-glucopyranosyl and α-D-mannopyranosyl linkages in the polymer.  相似文献   

15.
Chemical modification of xanthan gum to increase dissolution rate   总被引:5,自引:0,他引:5  
Xanthan gum is modified with formaldehyde to improve the dissolution rate. The FT-IR spectra and the X-ray diffraction spectra both show that chemical modification reduces intermolecular interactions and crystallinity. Viscosity measurements show that the chemically modified gum dissolves more rapidly than before.  相似文献   

16.
17.
This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.  相似文献   

18.
The effect of annealing on xanthan gum molecules was investigated using atomic force microscopy (AFM). The values of height and width of xanthan gum molecules in AFM images are ca. 1 nm, which strongly indicates that xanthan gum molecules extended on the mica surface are in mono- or double layers. When xanthan gum aqueous solution was annealed, a network structure was observed. In contrast, a network structure was not observed for non-annealed solution. AFM images provide direct information concerning oscillational change of the network structure. It is concluded that xanthan gum molecular chains in aqueous solution aggregate and dissociate in an oscillational manner with increasing annealing time and that a homogeneous network structure was formed by annealing at 40 °C for 24 h.  相似文献   

19.
微波诱变提高黄原胶的主要理化性能   总被引:3,自引:0,他引:3  
用微波诱变黄原胶产生菌-野油采黄单孢菌,得到产胶量,胶粘度,抗盐性,pH稳定性及温度稳定性都高于出发株的P402-21突变株,P402-21的产胶浓度为3.484%,1%胶粘度为1673cp,能耐受1%-11%,NaCl,在pH4-14范围内稳定,25-100摄氏度胶粘度没有明显的改变。  相似文献   

20.
High temperature rheological measurements (60–80°C) were carried out on gellan gum gel. The experiments were conducted in order to optimize the behavior of the gel as an entrapment matrix for fermentation processes of dairy fluids using highly thermophilic microorganisms. At 60°C, no significant decrease of rheological parameters of the gel was observed for 15 days, as compared to 23°C. At 80°C, the gel weakened abruptly. The gel was extremely sensitive to calcium loss (optimum concentration 0.1% CaCl2) due to chelating agents. Gellan gum gel could be an efficient entrapment matrix for fermentation processes at temperature up to 60°C in dairy fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号