首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclopentenone prostaglandins (cyPGs) prostaglandin A1 (PGA1) and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of PGA1 in lipopolysaccharide (LPS)-induced expression of interleukin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-PGJ2 inhibited expression of LPSinduced IL-10, whereas PGA1 increased LPS-induced IL-10 expression. This synergistic effect of PGA1 on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous PGA1 and LPS treatment (PGA1/LPS), and did not require new protein synthesis. The synergistic effect of PGA1 was inhibited by GW9662, a specific peroxisome proliferator-activated receptor (PPAR) antagonist, and Bay-11-7082, a NF-kappaB inhibitor. The extracellular signalregulated kinases (ERK) inhibitor PD98059 increased the expression of PGA1/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, PGA1 inhibited LPS-induced ERK phosphorylation. The synergistic effect of PGA1 on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and PGA1 increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of PGA1 on LPS-induced IL-10 expression is NF-kappaB-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/ JNK signaling pathways, and also associated with the PPARgamma pathway. Our data may provide more insight into the diverse mechanisms of PGA1 effects on the expression of cytokine genes.  相似文献   

2.
3.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-Delta(12,14)PGJ2 (15d-PGJ2) have been proposed as a new class of antiinflammatory compounds with possible clinical applications. As there is some controversy over the inhibitory effects of 15d-PGJ2 on chemokine gene expression, we investigated whether 15d-PGJ2 itself affected chemokine gene expression in human monocytes/macrophages and two monocytic cell lines. Here we demonstrate that the 15d-PGJ2 can induce IL-8 gene expression. In contrast, monocyte chemoattractant protein-1 gene expression was suppressed by 15d-PGJ2, while the expression of RANTES was unaltered. Furthermore, concomitant treatment of monocytes/macrophages with 15d-PGJ2 (2.5 x 10(-6) M) potentiated LPS-induced gene expression of IL-8 mRNA, but suppressed PMA-induction of IL-8 mRNA. In addition, treatment of U937 and THP-1 cells with 15d-PGJ2 also resulted in induction of IL-8 gene expression. Further studies demonstrated that 15d-PGJ2 regulated IL-8 gene expression via a ligand-specific and PPARgamma-dependent pathway. Our observations revealed a previous unappreciated function and mechanism of 15d-PGJ2-mediated regulation of cytokine gene expression in monocytes/macrophages.  相似文献   

4.
We have previously shown that non-pathogenic Gram-negative Bacteroides vulgatus induces transient RelA phosphorylation (Ser-536), NF-kappaB activity, and pro-inflammatory gene expression in native and intestinal epithelial cell (IEC) lines. We now demonstrate that 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) but not prostaglandin E(2) inhibits lipopolysaccharide (LPS) (B. vulgatus)/LPS (Escherichia coli)-induced RelA phosphorylation and interleukin-6 gene expression in the colonic epithelial cell line CMT-93. This inhibitory effect of 15d-PGJ(2) was mediated independently of LPS-induced IkappaBalpha phosphorylation/degradation and RelA nuclear translocation as well as RelA DNA binding activity. Interestingly, although B. vulgatus induced nuclear expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in native epithelium of monoassociated Fisher rats, PPARgamma-specific knock-down in CMT-93 cells using small interference RNA failed to reverse the inhibitory effects of PPARgamma agonist 15d-PGJ(2), suggesting PPARgamma-independent mechanisms. In addition, 15d-PGJ(2) but not the synthetic high affinity PPARgamma ligand rosiglitazone triggered ERK1/2 phosphorylation in IEC, and most importantly, MEK1 inhibitor PD98059 reversed the inhibitory effect of 15dPGJ(2) on LPS-induced RelA phosphorylation and interleukin-6 gene expression. Calyculin A, a specific phosphoserine/phospho-threonine phosphatase inhibitor increased the basal phosphorylation of RelA and reversed the inhibitory effect of 15d-PGJ(2) on LPS-induced RelA phosphorylation. We further demonstrated in co-immunoprecipitation experiments that 15d-PGJ(2) triggered protein phosphatase 2A activity, which directly dephosphorylated RelA in LPS-stimulated CMT-93 cells. We concluded that 15d-PGJ(2) may help to control NF-kappaB signaling and normal intestinal homeostasis to the enteric microflora by modulating RelA phosphorylation in IEC through altered protein phosphatase 2A activity.  相似文献   

5.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

6.
7.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

8.
9.
10.
A point mutation in Toll-like receptor 4 (Tlr4) gene in C3H/HeJ mice underlies a defect in LPS-induced cytokine production by peritoneal macrophages (PMphi;). Whether the C-C and the C-X-C chemokines are induced differently by LPS between alveolar macrophages (AMphi;) and PMphi; in this mice remains unclear. Thus, we examined the expression and regulation of macrophage inflammatory protein-1alpha (MIP-1alpha) and macrophage inflammatory protein-2 (MIP-2) in C3H/HeJ macrophages. These results showed that the accumulation of MIP-1alpha and MIP-2 mRNA increased dose dependently in response to LPS. PMphi; responded to LPS to produce significantly higher levels of both chemokine mRNA and protein than AMphi;. In addition, both macrophages produced much more MIP-2 than MIP-1alpha by the same doses of LPS stimulation. Moreover, the chemokine production by C3H/HeN macrophages was significantly higher than that of the C3H/HeJ macrophages. IFN-gamma suppressed the LPS-induced MIP-1alpha release but enhanced the LPS-induced MIP-2 secretion in both macrophages. These results show that the chemokine production was induced and regulated differentially in AMphi; and PMphi;.  相似文献   

11.
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been implicated in inhibition of the expression of proinflammatory cytokines and inducible enzymes such as cyclooxygenase-2 (COX-2). Using real-time RT-PCR the present study investigates the impact of two PPAR-gamma agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and ciglitazone, on the expression of several proinflammatory genes in lipopolysaccharide (LPS)-stimulated human blood monocytes. Stimulation of cells with LPS resulted in a profound induction of the expression of COX-2, interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Treatment of cells with 15d-PGJ(2) (10 microM) was associated with a nearly complete inhibition of the expression of all genes that remained unaltered in the presence of the PPAR-gamma antagonist bisphenol A diglycidyl ether (BADGE; 100 microM). By contrast, treatment of cells with another potent PPAR-gamma agonist, ciglitazone (50 microM), and the PPAR-alpha agonist WY-14,643 (100 microM) did not suppress LPS-induced expression of the investigated genes. Stimulation of monocytes with LPS resulted in an 88% inhibition of PPAR-gamma mRNA expression that was fully restored by 15d-PGJ(2) but only to a partial extent by ciglitazone and WY-14,643. Again, BADGE did not alter the effect of 15d-PGJ(2). Collectively, our results show that alterations of gene expression by 15d-PGJ(2) in LPS-stimulated human blood monocytes are mediated by PPAR-gamma-independent mechanisms. Moreover, it is concluded that both inhibition of proinflammatory gene expression and restoration of LPS-induced decrease of PPAR-gamma expression may contribute to the biological action of 15d-PGJ(2).  相似文献   

12.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

13.
It has been reported that oxidized low density lipoprotein (Ox-LDL) can activate both peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma. However, the detailed mechanisms of Ox-LDL-induced PPARalpha and PPARgamma activation are not fully understood. In the present study, we investigated the effect of Ox-LDL on PPARalpha and PPARgamma activation in macrophages. Ox-LDL, but not LDL, induced PPARalpha and PPARgamma activation in a dose-dependent manner. Ox-LDL transiently induced cyclooxygenase-2 (COX-2) mRNA and protein expression, and COX-2 specific inhibition by NS-398 or meloxicam or small interference RNA of COX-2 suppressed Ox-LDL-induced PPARalpha and PPARgamma activation. Ox-LDL induced phosphorylation of ERK1/2 and p38 MAPK, and ERK1/2 specific inhibition abrogated Ox-LDL-induced COX-2 expression and PPARalpha and PPARgamma activation, whereas p38 MAPK-specific inhibition had no effect. Ox-LDL decreased the amounts of intracellular long chain fatty acids, such as arachidonic, linoleic, oleic, and docosahexaenoic acids. On the other hand, Ox-LDL increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) level through ERK1/2-dependent overexpression of COX-2. Moreover, 15d-PGJ(2) induced both PPARalpha and PPARgamma activation. Furthermore, COX-2 and 15d-PGJ(2) expression and PPAR activity were increased in atherosclerotic lesions of apoE-deficient mice. Finally, we investigated the involvement of PPARalpha and PPARgamma on Ox-LDL-induced mRNA expression of ATP-binding cassette transporter A1 and monocyte chemoattractant protein-1. Interestingly, specific inhibition of PPARalpha and PPARgamma suppressed Ox-LDL-induced ATP-binding cassette transporter A1 mRNA expression and enhanced Ox-LDL-induced monocyte chemoattractant protein-1 mRNA expression. In conclusion, Ox-LDL-induced increase in 15d-PGJ(2) level through ERK1/2-dependent COX-2 expression is one of the mechanisms of PPARalpha and PPARgamma activation in macrophages. These effects of Ox-LDL may control excess atherosclerotic progression.  相似文献   

14.
1,25 Dihydroxy vitamin D(3) (vitamin D(3)) is an immunomodulator and its deficiency has been associated with susceptibility to tuberculosis. We have studied the immunoregulatory role of vitamin D(3) on various chemokine expression in pulmonary tuberculosis. Peripheral blood mononuclear cells obtained from 21 pulmonary tuberculosis (PTB) patients and 24 healthy controls (HCs) were cultured for 48h with culture filtrate antigen (CFA) of Mycobacterium tuberculosis with or without vitamin D(3) at a concentration 1×10(-7)M. The relative mRNA expression of monocyte chemoattractant protein-1 (MCP-1, CCL2), macrophage inflammatory protein-1α (MIP-1α, CCL3), macrophage inflammatory protein-1β (MIP-1β, CCL4), and regulated upon-activation, normal T cell-expressed and secreted (RANTES, CCL5) and IFN-γ inducible protein-10 (IP-10, CXCL10) chemokines were estimated from 48h old macrophages using real-time polymerase chain reaction (RT-PCR). The culture supernatants were used to estimate the various chemokines including monokine induced by IFN-γ (MIG, CXCL9) levels using cytometric bead array. In HCs, vitamin D(3) significantly suppressed the MCP-1 mRNA expression of CFA stimulated cells (p=0.0027), while no such effect was observed in PTB patients. Vitamin D(3) showed no significant effect on MIP-1α, MIP-1β and RANTES in both the study groups. The CFA induced IP-10 mRNA and protein expression was significantly suppressed by vitamin D(3) in both the study groups (p<0.05). A similar suppressive effect of vitamin D(3) was observed with MIG protein in healthy controls (p=0.0029) and a trend towards a suppression was observed in PTB patients. The suppressive effect of vitamin D(3) is more prominent in CXC chemokines rather than CC chemokines. This suggests that vitamin D(3) may down regulate the recruitment and activation of T-cells through CXC chemokines at the site of infection and may act as a potential anti-inflammatory agent.  相似文献   

15.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

16.
17.
The important role of neuroinflammation in many chronic and acute pathological conditions of the central nervous system is widely recognized. Curcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. This study investigated the inhibitory effect of curcumin on lipopolysacharide (LPS)-induced chemokine CCL2 (or monocyte chemoattractant protein-1, MCP-1) production and whether the effect is mediated by mitogen-activated protein kinases (MAPKs) in the rat astrocytoma cell C6. We observed that LPS (1 μg/ml) induced the upregulation of CCL2 mRNA and protein in C6. Treatment with curcumin (2.5, 10, and 25 μM) decreased the expression of CCL2 mRNA and protein in a dose-dependent manner under treatment with LPS. Additionally, the c-jun N-terminal kinase (JNK) inhibitor (SP600125) dose-dependently inhibited LPS-induced CCL2 upregulation, whereas the MAPK kinase (MEK) inhibitor (PD98059) only had a mild effect and the p38 MAPK inhibitor (SB203580) had no effect. Finally, western blot showed that LPS induced rapid JNK activation and curcumin reduced LPS-induced phosphoJNK (pJNK) expression at 30 min after LPS stimulation. These data suggest that the anti-neuroinflammatory effect of curcumin relates to the downregulation of CCL2 expression through the JNK pathway in astrocytoma cells, which indicates a possible benefit from the use of curcumin in the treatment of neuroinflammation-associated disorders.  相似文献   

18.
19.
20.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号