首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic and biochemical characterization of TraA, the relaxase of symbiotic plasmid pRetCFN42d from Rhizobium etli, is described. After purifying the relaxase domain (N265TraA), we demonstrated nic binding and cleavage activity in vitro and thus characterized for the first time the nick site (nic) of a plasmid in the family Rhizobiaceae. We studied the range of N265TraA relaxase specificity in vitro by testing different oligonucleotides in binding and nicking assays. In addition, the ability of pRetCFN42d to mobilize different Rhizobiaceae plasmid origins of transfer (oriT) was examined. Data obtained with these approaches allowed us to establish functional and phylogenetic relationships between different plasmids of this family. Our results suggest novel characteristics of the R. etli pSym relaxase for previously described conjugative systems, with emphasis on the oriT cis-acting preference of this enzyme and its possible biological relevance.  相似文献   

3.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

4.
Many Bacteroides clinical isolates contain large conjugative transposons, which excise from the genome of a donor and transfer themselves to a recipient by a process that requires cell-to-cell contact. It has been suggested that the transfer intermediate of the conjugative transposons is a covalently closed circle, which is transferred by the same type of rolling circle mechanism used by conjugative plasmids, but the transfer origin of a conjugative transposon has not previously been localized and characterized. We have now identified the transfer origin (oriT) region of one of the Bacteroides conjugative transposons, TcrEmr DOT, and have shown that it is located near the middle of the conjugative transposon. We have also identified a 16-kbp region of the conjugal transposon which is necessary and sufficient for conjugal transfer of the element and which is located near the oriT. This same region proved to be sufficient for mobilization of coresident plasmids and unlinked integrated elements as well as for self-transfer, indicating that all of these activities are mediated by the same transfer system. Previously, we had reported that disruption of a gene, rteC, abolished self-transfer of the element. rteC is one of a set of rte genes that appears to mediate tetracycline induction of transfer activities of the conjugative transposons. On the basis of these and other data, we had proposed that RteC activated expression of transfer genes. We have now found, however, that when the transfer region of TcrEmr DOT was cloned as a plasmid that did not contain rteC and the plasmid (pLYL72) was tested for transfer out of a Bacteroides strain that did not have a copy of rteC in the chromosome, the plasmid was self-transmissible without tetracycline induction. This and other findings suggest that RteC is not an activator transfer genes but is stimulating transfer in some other way.  相似文献   

5.
We have determined the DNA sequences of two unlinked regions of octopine-type Ti plasmids that contain genes required for conjugal transfer. Both regions previously were shown to contain sequences that hybridize with tra genes of the nopaline-type Ti plasmid pTiC58. One gene cluster (designated tra) contains a functional oriT site and is probably required for conjugal DNA processing, while the other gene cluster (designated trb) probably directs the synthesis of a conjugal pilus and mating pore. Most predicted Tra and Trb proteins show relatively strong sequence similarity (30 to 50% identity) to the Tra and Trb proteins of the broad-host-range IncP plasmid RP4 and show significantly weaker sequence similarity to Vir proteins found elsewhere on the Ti plasmid. An exception is found in the Ti plasmid TraA protein, which is predicted to be a bifunctional nickase-helicase that has no counterpart in IncP plasmids or among Vir proteins but has homologs in at least six other self-transmissible and mobilizable plasmids. We conclude that this Ti plasmid tra system evolved by acquiring genes from two or three different sources. A similar analysis of the Ti plasmid vir region indicates that it also evolved by appropriating genes from at least two conjugal transfer systems. The widely studied plasmid pTiA6NC previously was found to be nonconjugal and to have a 12.65-kb deletion of DNA relative to other octopine-type Ti plasmids. We show that this deletion removes the promoter-distal gene of the trb region and probably accounts for the inability of this plasmid to conjugate.  相似文献   

6.
7.
8.
A segment of R1162 DNA containing genes for conjugative mobilization (Mob) and the origin of transfer (oriT) was integrated into the Escherichia coli chromosome. Bacterial genes were transferred in a polar fashion during conjugative mobilization of the integrated segment by a self-transmissible plasmid vector. The direction of transfer, together with the properties of mutated derivatives of oriT, indicate that initial cleavage of oriT, and subsequent religation after transfer, entail different mechanisms that can be distinguished genetically.  相似文献   

9.
Tn916-dependent mobilization of nonconjugative plasmids pUB110 and its derivative pUB110Deltam was compared. Deleting a 787-bp fragment from the pUB110 mob region created plasmid pUB110Deltam. Deletion of the mob region of pUB110 rendered the plasmid nontransferable by the conjugative plasmids of Bacillus thuringiensis subsp. israelensis. During matings between Bacillus subtilis (Tn916) and B. thuringiensis subsp. israelensis, however, Tn916-dependent mobilization of plasmids pUB110 and pUB110Deltam was observed at a frequency of approximately 2 x 10(-6) transconjugants per donor. The results show that Tn916-mediated conjugal transfer of plasmids is a mob-independent event. Jaworski and Clewell (J. Bacteriol 177; 6644-6651) recently demonstrated the presence of an IncP-like nicking site in the oriT of Tn916. These data suggest that a IncP-like nickling site is essential for Tn916-mediated plasmid transfer.  相似文献   

10.
In order to establish a gene transfer system for yeast by promiscuous conjugation, we constructed plasmid pAY101 which contained an oriT sequence derived from RK2 (IncP) and the yeast TRP1 and ARS1 genes. A conjugation mixture consisted of yeast Saccharomyces cerevisiae, E. coli harboring pAY101, and E. coli carrying a helper plasmid with mob and tra. In the conjugation mixture a tryptophan-requiring yeast mutant (trp1) was converted to be prototrophic for tryptophan at a frequency of about 10(-5) to 10(-3) per recipient cell. This E. coli-yeast conjugation system required the mob, tra, oriT, TRP1 and ARS1 genes. The mob and tra genes were trans-acting elements as in an E. coli conjugation system. The mobilization was inhibited by nalidixic acid as in a typical bacterial conjugation. DNA analysis indicated that the plasmid pAY101 was transferred from E. coli to S. cerevisiae, and retained its original structure and function in yeast host cells.  相似文献   

11.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

12.
The nucleotide sequence of the DNA mobilization region of the 5-nitroimidazole resistance plasmid pIP421, from strain BF-F239 of Bacteroides fragilis, was determined. It contains a putative origin of transfer (oriT) including three sets of inverted repeats and two sequences reminiscent of specific integration host factor binding sites. The product of the mobilization gene mob421 (42.2 kDa) is a member of the Bacteroides mobilization protein family, which includes the MobA of pBI143, NBUs, and Tn4555. Sequence similarity suggests that it has both oriT binding and nicking activities. The transfer frequency of pIP421 in a B. fragilis donor strain possessing a Tc(r) or Tc(r) Em(r)-like conjugative transposon was significantly enhanced by tetracycline. Moreover, the mobilization region of pIP421 confers the ability to be mobilized from Escherichia coli by an IncP plasmid.  相似文献   

13.
The origin of transfer (oriT) of a bacterial plasmid plays a key role in both the initiation and termination of conjugative DNA transfer. We have previously shown that a conjugation-dependent recombination between the tandem R64 oriT sequences cloned into pHSG398 occurred, resulting in the deletion of the intervening sequence during DNA transfer. In this study, we tandemly cloned two oriT sequences of IncI1 plasmid R64 into pUC18. Specific recombination between the two oriT sequences in pUC18 was observed within Escherichia coli cells harboring mini-R64. This recombination was found to be independent of both the recA gene and conjugative DNA transfer. The R64 genes nikA and nikB, required for conjugal DNA processing, were essential for this recombination. Although a fully active 92-bp oriT sequence was required at one site for the recombination, the 44-bp oriT core sequence was sufficient at the other site. Furthermore, when two oriT sequences were tandemly cloned into the single-stranded phage vector M13 and propagated within E. coli cells, recombination between the two oriT sequences was observed, depending on the nikB gene. These results suggest that the R64 relaxase protein NikB can execute cleavage and rejoining of single-stranded oriT DNA within E. coli cells, whereas such a reaction in double-stranded oriT DNA requires collaboration of the two relaxosome proteins, NikA and NikB.  相似文献   

14.
15.
Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.  相似文献   

16.
17.
Streptococcal plasmid pIP501 has a functional oriT site.   总被引:7,自引:3,他引:4       下载免费PDF全文
DNA sequence analysis suggested the presence of a plasmid transfer origin-like site (oriT) in the gram-positive conjugative plasmid pIP501. To test the hypothesis that the putative oriT site in pIP501 played a role in conjugal transfer, we conducted plasmid mobilization studies in Enterococcus faecalis. Two fragments, 49 and 309 bp, which encompassed the oriT region of pIP501, were cloned into pDL277, a nonconjugative plasmid of gram-positive origin. These recombinant plasmids were mobilized by pVA1702, a derivative of pIP501, at a frequency of 10(-4) to 10(-5) transconjugants per donor cell, while pDL277 was mobilized at a frequency of 10(-8) transconjugants per donor cell. These results indicated that the oriT-like site was needed for conjugal mobilization. To demonstrate precise nicking at the oriT site, alkaline gel and DNA-sequencing analyses were performed. Alkaline gel electrophoresis results indicated a single-stranded DNA break in the predicted oriT site. The oriT site was found upstream of six open reading frames (orf1 to orf6), each of which plays a role in conjugal transfer. Taken together, our conjugal mobilization data and the in vivo oriT nicking seen in Escherichia coli argue compellingly for the role of specific, single-stranded cleavage in plasmid mobilization. Thus, plasmid mobilization promoted by pVA1702 (pIP501) works in a fashion similar to that known to occur widely in gram-negative bacteria.  相似文献   

18.
Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is induced by certain opines secreted from crown galls. On transmissible plasmids, DNA transfer initiates within a cis-acting site, the origin of conjugal transfer, or oriT. We have localized an oriT on the A. tumefaciens plasmid pTiC58 to a region containing the conjugal transfer loci traI and traII and acc, which is the locus encoding catabolism of the two conjugal opines, agrocinopines A and B. The smallest functional oriT clone, a 65-bp BamHI-ApaI fragment in the recombinant plasmid pDCBA60-11, mapped within the traII locus. The nucleotide sequence for a 665-bp KpnI-EcoRI fragment with oriT activity was determined. DNA sequence alignments showed identities between the pTiC58 oriT and the transfer origins of RSF1010, pTF1, and RK2/RP4 and with the pTiC58 T-region borders. The RSF1010-like sequence on pTiC58 is located in the smallest active oriT clone of pTiC58, while the sequence showing identities with the oriT regions of RK2/RP4 and with T-region borders maps outside this region. Despite their sequence similarities, pTiC58 oriT clones were not mobilized by RP4; nor could vectors containing the RK2/RP4 oriT region or the oriT-mob region from RSF1010 be mobilized by pTiC58. In contrast, other Ti plasmids and a conjugally active Agrobacterium opine catabolic plasmid, pAtK84b, efficiently mobilized pTiC58 oriT clones. In addition, the RSF1010 derivative, pDSK519, was mobilized at moderate frequencies by an Agrobacterium strain harboring only the cryptic plasmid pAtC58 and at very low frequencies by an Agrobacterium host that does not contain any detectable plasmids.  相似文献   

19.
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.  相似文献   

20.
The oriT region of the conjugative IncN plasmid pCU1 has been localized to a 669-bp sequence extending from pCU1 coordinates 8.48 to 9.15 kb. The nucleotide sequence of this region was determined. The region is AT-rich (69% AT residues), with one 19-bp and one 81-bp sequence containing 79% or more AT residues. Prominent sequence features include one set of thirteen 11-bp direct repeats, a second set of two 14-bp direct repeats, six different inverted repeat sequences ranging from 6 to 10 bp in size, and two sequences showing 12 of 13 nucleotides identical to the consensus integration host factor binding sequence. Specificity between this oriT and mobilization (mob) functions encoded by the N tra system was demonstrated. This specificity is encoded by the region lying clockwise of the BglII site at coordinate 3.3 on the pCU1 map. Two N tra plasmids isolated in the preantibiotic era were unable to mobilize recombinant plasmids carrying the oriT region of pCU1 or to complement transposon Tn5 mutations in the mob region of the closely related plasmid pKM101.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号