共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure of an unusually stable RNA hairpin. 总被引:21,自引:0,他引:21
2.
C de los Santos M Cosman B E Hingerty V Ibanez L A Margulis N E Geacintov S Broyde D J Patel 《Biochemistry》1992,31(23):5245-5252
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
A test of the model to predict unusually stable RNA hairpin loop stability 总被引:2,自引:1,他引:2 下载免费PDF全文
To investigate the accuracy of a model [Giese et al., 1998, Biochemistry37:1094-1100 and Mathews et al., 1999, JMol Biol 288:911-940] that predicts the stability of RNA hairpin loops, optical melting studies were conducted on sets of hairpins previously determined to have unusually stable thermodynamic parameters. Included were the tetraloops GNRA and UNCG (where N is any nucleotide and R is a purine), hexaloops with UU first mismatches, and the hairpin loop of the iron responsive element, CAGUGC. The experimental values for the GNRA loops are in excellent agreement (deltaG degrees 37 within 0.2 kcal/mol and melting temperature (TM) within 4 degrees C) with the values predicted by the model. When the UNCG hairpin loops are treated as tetraloops, and a bonus of 0.8 kcal/mol included in the prediction to account for the extra stable first mismatch (UG), the measured and predicted values are also in good agreement (deltaG degrees 37 within 0.7 kcal/mol and TM within 3 degrees C). Six hairpins with unusually stable UU first mismatches also gave good agreement with the predictions (deltaG degrees 37 within 0.5 kcal/mol and TM within 8 degrees C), except for hairpins closed by wobble base pairs. For these hairpins, exclusion of the additional stabilization term for UU first mismatches improved the prediction (AG degrees 37 within 0.1 kcal/mol and TM within 3 degrees C). Hairpins with the iron-responsive element loop were not predicted well by the model, as measured deltaG degrees 37 values were at least 1 kcal/mol greater than predicted. 相似文献
4.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc. 相似文献
5.
The three-dimensional structure of a DNA hairpin in solution two-dimensional NMR studies and structural analysis of d(ATCCTATTTATAGGAT) 总被引:11,自引:0,他引:11
M J Blommers F J van de Ven G A van der Marel J H van Boom C W Hilbers 《European journal of biochemistry》1991,201(1):33-51
The hairpin formed by d(ATCCTATTTATAGGAT) was studied by means of two-dimensional NMR spectroscopy and conformational analysis. Almost all 1H resonances of the stem region could be assigned, while the 1H and 31P spectra of the loop region were interpreted completely; this includes the stereospecific assignment of the H5' and H5" resonances. The derivation of the detailed loop structure was carried out in a stepwise fashion including some improved and new methods for structure determination from NMR data. In the first step, the mononucleotide structures were examined. The conformational space available to the mononucleotide was scanned systematically by varying the glycosidic torsion angle and pseudorotational parameters. Each generated conformer was tested against the experimental J coupling constants and NOE parameters. In the following stage, the structures of dinucleotides and longer fragments were derived. Inter-residue distances between protons were calculated by means of a procedure in which the simulated NOEs, obtained via a relaxation-matrix approach, were fitted to the experimental NOEs without the introduction of a molecular model. In addition, the backbone torsion angles beta, gamma and epsilon were deduced from homocoupling and heterocoupling constants. These data served as constraints in the next step, in which the loop sequence was subjected to a multi-conformer generation procedure. The resulting structures were tested against the mentioned constraints and disregarded if these constraints were violated. This yielded a family of structures for the loop region, confined to a relatively narrow conformational space. A representative conformation was subsequently docked on a B-type stem which fulfilled the structural constraints (derived from the NMR experiments for the stem region) to yield the hairpin structure. Results obtained from subsequent restrained-molecular-mechanics as well as free-molecular-mechanics calculations are in accordance with those obtained by means of the analysis described above. The structure of the hairpin loop is a compactly folded conformation and the first base of the central TTTA region forms a Hoogsteen T-A pair with the fourth base. This Hoogsteen base pair is stacked upon the sixth base pair of the B-type double-helical stem. The second base of the loop is folded into the minor groove, whereas the third base of the loop is partly stacked on the first and fourth bases. The phosphate backbone exhibits a sharp turn between the third and fourth nucleotides of the loop. The peculiar structure of this hairpin loop is discussed in relation to loop folding in DNA and RNA hairpins and in relation to a general model for loop folding. 相似文献
6.
Previous studies employing a 79-nucleotide (nt) RNA indicated that this RNA could form two bands in a native polyacrylamide gel while one band was observed in a denaturing gel. This report describes an investigation on the nature of the two corresponding structures and the segment responsible for forming the slower mobility band. Sedimentation equilibrium of the 79-nt RNA was consistent with the two gel bands corresponding to monomer and dimer forms. The portion of the RNA required for dimer formation was explored using a secondary structure prediction algorithm of two 79-nt RNAs linked in a head-to-tail fashion. The predicted structure suggested that the first 21-nt at the 5′ end of each RNA formed a self-complementary duplex. A ribonuclease H assay carried out with RNA prepared as monomer (M), or a mixture of monomer and dimer (M/D), gave results consistent with the predicted M and D structures. Gel mobility experiments on 5′ and 3′ segments of the 79-nt RNA also indicated that dimer formation was due to the 21-nt 5′ end. Studies on the 21-nt RNA molecule and sequence variants showed that this sequence can form a hairpin and a dimer complex. Unexpectedly, the hairpin to dimer conversion was shown to occur at high efficiency in frozen solution, although little or no conversion was observed above 0°C. The results indicate that a freezing environment can promote formation of intermolecular RNA complexes from stable RNA hairpins, supporting the notion that this environment could have played a role in the evolution of RNA complexity. 相似文献
7.
About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs. 相似文献
8.
The use of non-uniform deuterium labelling ['NMR-window'] to study the NMR structure of a 21mer RNA hairpin. 下载免费PDF全文
A Fldesi S I Yamakage F P Nilsson T V Maltseva J Chattopadhyaya 《Nucleic acids research》1996,24(7):1187-1194
The first synthesis of a non-uniformly deuterium labelled 21mer RNA is reported using our 'NMR-window' concept, showing its unique application in the unambiguous NMR assignment of the non-exchangeable aromatic and sugar protons. 相似文献
9.
Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: comparison with the DNA analogue d(CGCAAATTTGCG)2. 下载免费PDF全文
The thermodynamic stability of nine dodecamers (four DNA and five RNA) of the same base composition has been compared by UV-melting. TheDeltaG of stabilisation were in the order: r(GACUGAUCAGUC)2>r(CGCAAATTTGCG)2 approximately r(CGCAUAUAUGCG)2>d(CGCAAATTTGCG)2 approximately r(CGCAAAUUUGCG)2>d(CGCATATATGCG)2 approximately d(GACTGATCAGTC)2>r(CGCUUUAAAGCG)2 approximately d(CGCTTTAAAGCG)2. Compared with the mixed sequences, both r(AAAUUU) and r(UUUAAA) are greatly destablising in RNA, whereas in DNA, d(TTTAAA) is destabilising but d(AAATTT) is stabilising, which has been attributed to the formation of a special B'structure involving large propeller twists of the A-T base pairs. The solution structure of the RNA dodecamer r(CGCAAAUUUGCG)2has been determined using NMR and restrained molecular dynamics calculations to assess the conformational reasons for its stability in comparison with d(CGCAAATTTGCG)2. The structures refined to a mean pairwise r.m.s.d. of 0.89+/-0.29 A. The nucleotide conformations are typical of the A family of structures. However, although the helix axis displacement is approximately 4.6 A into the major groove, the rise (3.0 A) and base inclination ( approximately 6 degrees ) are different from standard A form RNA. The extensive base-stacking found in the AAATTT tract of the DNA homologue that is largely responsible for the higher thermodynamic stability of the DNA duplex is reduced in the RNA structure, which may account for its low relative stability. 相似文献
10.
Three-dimensional structure of a DNA hairpin in solution: two-dimensional NMR studies and distance geometry calculations on d(CGCGTTTTCGCG) 总被引:18,自引:0,他引:18
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed. 相似文献
11.
Webba da Silva M 《Biochemistry》2003,42(49):14356-14365
The structure formed by the DNA sequence d(GCGGTGGAT) in a 100 mM Na(+) solution has been determined using molecular dynamics calculations constrained by distance and dihedral restraints derived from NMR experiments performed at isotopic natural abundance. The sequence folds into a dimer of dimers. Each symmetry-related half contains two parallel stranded G:G:G:G tetrads flanked by an A:A mismatch and by four-stranded G:C:G:C tetrads. Each of the two juxtaposed G:C:G:C tetrads is composed of alternating antiparallel strands from the two halves of the dimer. For each single strand, a thymine intersperses a double chain reversal connecting the juxtaposed G:G:G:G tetrads. This architecture has potential implications in genetic recombination. It suggests a pathway for oligomerization involving association of quadruplex entities through GpC steps. 相似文献
12.
13.
Incorporation of a bicyclo[3.1.0]hexane scaffold into the nucleoside sugar was devised to lock the embedded cyclopentane ring in conformations that mimic the furanose North and South sugar puckers. To analyze the effects of North-methanocarba-2'-deoxythymidine (N-MCdT) on the B-form DNA, we crystallized d(CGCGAA[mcTmcT]CGCG) with two N-MCdTs. Instead of a duplex, the 12mer forms a tetraloop hairpin, whereby loop N-MCdTs adopt the C4'-exo pucker (NE; P = 50°). Thus, the bicyclic framework does not limit the pucker to the anticipated C2'-exo range (NNW; P = -18°). 相似文献
14.
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) shows significant differences to that found in solution. 下载免费PDF全文
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed. 相似文献
15.
The solution structure of [d(CGC)r(aaa)d(TTTGCG)](2): hybrid junctions flanked by DNA duplexes 下载免费PDF全文
The solution structure and hydration of the chimeric duplex [d(CGC)r(aaa)d(TTTGCG)]2, in which the central hybrid segment is flanked by DNA duplexes at both ends, was determined using two-dimensional NMR, simulated annealing and restrained molecular dynamics. The solution structure of this chimeric duplex differs from the previously determined X-ray structure of the analogous B-DNA duplex [d(CGCAAATTTGCG)]2 as well as NMR structure of the analogous A-RNA duplex [r(cgcaaauuugcg)]2. Long-lived water molecules with correlation time τc longer than 0.3 ns were found close to the RNA adenine H2 and H1′ protons in the hybrid segment. A possible long-lived water molecule was also detected close to the methyl group of 7T in the RNA–DNA junction but not with the other two thymines (8T and 9T). This result correlates with the structural studies that only DNA residue 7T in the RNA–DNA junction adopts an O4′-endo sugar conformation, while the other DNA residues including 3C in the DNA–RNA junction, adopt C1′-exo or C2′-endo conformations. The exchange rates for RNA C2′-OH were found to be ~5–20 s–1. This slow exchange rate may be due to the narrow minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2, which may trap the water molecules and restrict the dynamic motion of hydroxyl protons. The minor groove width of [d(CGC)r(aaa)d(TTTGCG)]2 is wider than its B-DNA analog but narrower than that of the A-RNA analog. It was further confirmed by its titration with the minor groove binding drug distamycin. A possible 2:1 binding mode was found by the titration experiments, suggesting that this chimeric duplex contains a wider minor groove than its B-DNA analog but still narrow enough to hold two distamycin molecules. These distinct structural features and hydration patterns of this chimeric duplex provide a molecular basis for further understanding the structure and recognition of DNA·RNA hybrid and chimeric duplexes. 相似文献
16.
Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. 总被引:21,自引:0,他引:21
A model for the solution structure of an RNA tetraplex, (rUGGGGU)4, has been obtained by two-dimensional NMR spectroscopy and molecular dynamics. The molecule is parallel stranded and Hoogsteen base-paired in 50 mM KCl, and it is so stable that three of its six imino protons have exchange half-lives measured in days at 40 degrees C. The tetraplex is stabilized by base stacking and by the hydrogen bonds in four G quartets and at least one U quartet. This is the first indication of the existence of U-quartet structures of which we are aware. 相似文献
17.
Quantitative NMR study has shown a significant difference in affinity of (15)NH(4)(+) ions for cation binding sites within G-quadruplexes adopted by d[G3T4G4]2 and d[G4(T4G4)3]. 相似文献
18.
The synthetic deoxyoctanucleotide d(G-G-G-G-T-C-C-C) crystallizes as an A-type DNA double helix containing two adjacent G . T base-pair mismatches. The structure has been refined to an R-factor of 14% at 2.1 A resolution with 104 solvent molecules located. The two G . T mismatches adopt the "wobble" form of base-pairing. The mismatched bases are linked by a network of water molecules interacting with the exposed functional groups in both the major and minor grooves. The presence of two mispaired bases in the octamer has surprisingly little effect on the global structure of the helix or the backbone and glycosidic torsional angles. Base stacking around the mismatch is perturbed, but the central G-T step shows particularly good base overlap, which may contribute to the relatively high stability of this oligomer. 相似文献
19.
We have measured the CD, isotropic absorption, and linear dichroism (LD) in the vacuum-uv spectral region for the B-conformations of poly[d(G)]-poly[d(C)] and poly[d(GC)]-poly[d(GC)], and for the Z-conformation of poly[d(GC)]-poly[d(GC)] formed in 70% trifluoroethanol. The reduced dichroism (LD divided by isotropic absorption) for all conformations varied with wavelength, indicating that the bases are not perpendicular to the helix axis. Since the directions of the transition dipoles are known, the inclinations and axes of inclination of each base can be determined from the wavelength dependence of the reduced dichroism spectra. The results indicate that the base normals of the (G + C) polymers in the B- and Z-conformations are tilted at angles greater than 19° with respect to the helix axis. The guanine and cytosine bases have different inclinations, and the tilt axes are not parallel. Therefore, the bases for all the (G + C) polymer conformations studied are buckled and propeller twisted. 相似文献
20.
Kostiukov VV 《Biofizika》2011,56(1):35-47
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable. 相似文献