首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metachromatic leukodystrophy is a lysosomal storage disease caused by deficiency of arylsulfatase A. Sequencing of the arylsulfatase A genes of an Ashkenazi Jewish patient suffering from the severe late infantile form of the disease revealed a point mutation in exon 2 causing proline 136 to be substituted by leucine. The patient was homozygous for this mutation. Studies on Ltk- cells stably expressing the mutant enzyme show that the mutation causes complete loss of enzyme activity and rapid degradation in an early biosynthetic compartment.  相似文献   

2.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

3.
The mild nonclassic form of steroid 21-hydroxylase deficiency is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a Val-281----Leu missense mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, we used recombinant vaccinia virus to express two mutant enzymes carrying the mutations Pro-30----Leu (normally present in CYP21P) and Ser-268----Thr (considered a normal polymorphism of CYP21). Whereas the activity of the protein carrying the Ser----Thr mutation was indeed indistinguishable from the wild type, the enzyme with the Pro----Leu substitution had 60% of wild-type activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. When kinetic analysis of the latter mutant enzyme was performed in cellular lysates, the first order rate constants (maximum velocity/dissociation constant) for both substrates were reduced 10- to 20-fold compared with those for the wild-type enzyme. Pro-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the aminoterminal transmembrane segment. The Pro----Leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency, suggesting that this mutation indeed acts as a nonclassic deficiency allele.  相似文献   

4.
Recently, S-adenosylhomocysteine hydrolase deficiency was confirmed for the first time in an adult. Two missense mutations in codons 89 (A>V) and 143 (Y>C) in the AdoHcyase gene were identified [N.R.M. Buist, B. Glenn, O. Vugrek, C. Wagner, S. Stabler, R.H. Allen, I. Pogribny, A. Schulze, S.H. Zeisel, I. Bari?, S.H. Mudd, S-Adenosylhomocysteine hydrolase deficiency in a 26-year-old man, J. Inh. Metab. Dis. 29 (2006) 538-545]. Accordingly, we have proven the Y143C mutation to be highly inactivating [R. Beluzi?, M. Cuk, T. Pavkov, K. Fumi?, I. Bari?, S.H. Mudd, I. Jurak, O. Vugrek, A single mutation at tyrosine 143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and effects the oxidation state of bound co-factor NAD, Biochem. J. 400 (2006) 245-253]. Now we report that the A89V exchange leads to a 70% loss of enzymatic activity, respectively. Circular dichroism analysis of recombinant p.A89V protein shows a significantly reduced unfolding temperature by 5.5 degrees C compared to wild-type. Gel filtration of mutant protein is almost identical to wild-type indicating assembly of subunits into the tetrameric complex. However, electrophoretic mobility of p.A89V is notably faster as shown by native polyacrylamide gel electrophoresis implicating changes to the overall charge of the mutant complex. 'Bioinformatics' analysis indicates that Val(89) collides with Thr(84) causing sterical incompatibility. Performing site-directed mutagenesis changing Thr(84) to 'smaller' Ser(84) but preserving similar physico-chemical properties restores most of the catalytic capabilities of the mutant p.A89V enzyme. On the other hand, substitution of Thr(84) with Lys(84) or Gln(84), thereby introducing residues with higher volume in proximity to Ala(89) results in inactivation of wild-type protein. In view of our mutational analysis, we consider changes in charge and the sterical incompatibility in mutant p.A89V protein as main reason for enzyme malfunction with AdoHcyase deficiency as consequence.  相似文献   

5.
Summary Deficient arylsulfatase-A activity is diagnostic of a neurodegenerative human lysosomal storage disease, metachromatic leukodystrophy. Paradoxically, similar enzyme deficiency also occurs in normal individuals, who are known as being pseudo arylsulfatase-A deficient. We showed previously that this phenotype is associated with a structural gene mutation that produces an exceptionally labile enzyme. We now report on the nature and consequence of this mutation. When the mutant arylsulfatase-A is deglycosylated by endoglycosidase H, only one smaller molecular species was generated, instead of the two from the normal enzyme. This is consistent with the loss of one of the two N-linked oligosaccharide side chains known to be present on the wild-type enzyme. Quantitative analysis of mannose and leucine incorporation showed that the mutant enzyme incorporated two- to tenfold less mannose than the normal enzyme on a molar basis. This deficient glycosylation was specific to arylsulfatase-A. Another lysosomal enzyme not affected in this mutation, beta-hexosaminidase, was glycosylated normally in the mutant cells. The remaining single oligosaccharide side chain released from the mutant arylsulfatase-A by pronase digestion was normally processed to complex and high-mannose forms. However, the high-mannose side chains contained 30% fewer phosphorylated residues than those of the normal enzyme. Nevertheless, this reduced level of phosphorylation did not prevent targeting of the mutant enzyme to the lysosomes, a process normally mediated through phosphorylated mannose residues. In conclusion, pseudo arylsulfatase-A deficiency is a unique human mutation associated with reduced glycosylation and phosphorylation of a lysosomal enzyme with the loss of one of the two carbohydrate side chains. The mutation results in greatly reduced enzyme stability, thus indicating a role for oligosaccharides in maintaining enzyme stability within the degradative environment of the lysosomes. However, the residual catalytic activity or subcellular targeting of the mutant enzyme was not affected. These properties probably account for the benign clinical presentation of pseudo arylsulfatase-A deficiency.Abbreviations PD Pseudo arylsulfatase-A Deficiency - ARA Arylsulfatase-A  相似文献   

6.
Palenchar JB  Colman RF 《Biochemistry》2003,42(7):1831-1841
Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.  相似文献   

7.
3-phosphoglycerate dehydrogenase (PHGDH) deficiency is a disorder of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures. To investigate the molecular basis for this disorder, the PHGDH mRNA sequence was characterized, and six patients from four families were analyzed for sequence variations. Five patients from three different families were homozygous for a single nucleotide substitution predicted to change valine at position 490 to methionine. The sixth patient was homozygous for a valine to methionine substitution at position 425; both mutations are located in the carboxyterminal part of PHGDH. In vitro expression of these mutant proteins resulted in significant reduction of PHGDH enzyme activities. RNA-blot analysis indicated abundant expression of PHGDH in adult and fetal brain tissue. Taken together with the severe neurological impairment in our patients, the data presented in this paper suggest an important role for PHGDH activity and L-serine biosynthesis in the metabolism, development, and function of the central nervous system.  相似文献   

8.
The Ashkenazi Jewish population is enriched for carriers of a fatal form of Tay-Sachs disease, an inherited disorder caused by mutations in the alpha-chain of the lysosomal enzyme, beta-hexosaminidase A. Until recently it was presumed that Tay-Sachs patients from this ethnic isolate harbored the same alpha-chain mutation. This was disproved by identification of a splice junction defect in the alpha-chain of an Ashkenazi patient which could be found in only 20-30% of the Ashkenazi carriers tested. In this study we have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM515, with classic Tay-Sachs disease who was negative for the splice junction defect. Sequence analysis of the promoter region, exon and splice junctions regions, and polyadenylation signal area revealed a 4-base pair insertion in exon 11. This mutation introduces a premature termination signal in exon 11 which results in a deficiency of mRNA in Ashkenazi patients. A dot blot assay was developed to screen patients and heterozygote carriers for the insertion mutation. The lesion was found in approximately 70% of the carriers tested, thereby distinguishing it as the major defect underlying Tay-Sachs disease in the Ashkenazi Jewish population.  相似文献   

9.
Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 11 individuals have been reported suffering from a complete DHP deficiency. Here, we report on the clinical, biochemical and molecular findings of 17 newly identified DHP deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological and gastrointestinal abnormalities and markedly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. Analysis of DPYS, encoding DHP, showed nine missense mutations, two nonsense mutations, two deletions and one splice-site mutation. Seventy-one percent of the mutations were located at exons 5–8, representing 41% of the coding sequence. Heterologous expression of 11 mutant enzymes in Escherichia coli showed that all but two missense mutations yielded mutant DHP proteins without significant activity. Only DHP enzymes containing the mutations p.R302Q and p.T343A possessed a residual activity of 3.9% and 49%, respectively. The crystal structure of human DHP indicated that the point mutations p.R490C, p.R302Q and p.V364M affect the oligomerization of the enzyme. In contrast, p.M70T, p.D81G, p.L337P and p.T343A affect regions near the di-zinc centre and the substrate binding site. The p.S379R and p.L7V mutations were likely to cause structural destabilization and protein misfolding. Four mutations were identified in multiple unrelated DHP patients, indicating that DHP deficiency may be more common than anticipated.  相似文献   

10.
Carnitine palmitoyltransferase I (CPT I) catalyzes the formation of acylcarnitine, the first step in the oxidation of long-chain fatty acids in mitochondria. The enzyme exists as liver (L-CPT I) and muscle (M-CPT I) isoforms that are encoded by separate genes. Genetic deficiency of L-CPT I, which has been reported in 16 patients from 13 families, is characterized by episodes of hypoketotic hypoglycemia beginning in early childhood and is usually associated with fasting or illness. To date, only two mutations associated with L-CPT I deficiency have been reported. In the present study we have identified and characterized the mutations underlying L-CPT I deficiency in six patients: five with classic symptoms of L-CPT I deficiency and one with symptoms that have not previously been associated with this disorder (muscle cramps and pain). Transfection of the mutant L-CPT I cDNAs in COS cells resulted in L-CPT I mRNA levels that were comparable to those expressed from the wild-type construct. Western blotting revealed lower levels of each of the mutant proteins, indicating that the low enzyme activity associated with these mutations was due, at least in part, to protein instability. The patient with atypical symptoms had approximately 20% of normal L-CPT I activity and was homozygous for a mutation (c.1436C-->T) that substituted leucine for proline at codon 479. Assays performed with his cultured skin fibroblasts indicated that this mutation confers partial resistance to the inhibitory effects of malonyl-CoA. The demonstration of L-CPT I deficiency in this patient suggests that the spectrum of clinical sequelae associated with loss or alteration of L-CPT I function may be broader than was previously recognized.  相似文献   

11.
Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP-galactose-4-epimerase (hGALE). We and others have identified substitution mutations in the hGALE alleles of patients with the clinically mild, peripheral form of epimerase deficiency. We report here the first identification of an hGALE mutation in a patient with the clinically severe, generalized form of epimerase deficiency. The mutation, V94M, was found on both GALE alleles of this patient. This same mutation also was found in the homozygous state in two additional patients with generalized epimerase deficiency. The specific activity of the V94M-hGALE protein expressed in yeast was severely reduced with regard to UDP-galactose and partially reduced with regard to UDP-N-acetylgalactosamine. In contrast, two GALE-variant proteins associated with peripheral epimerase deficiency, L313M-hGALE and D103G-hGALE, demonstrated near-normal levels of activity with regard to both substrates, but a third allele, G90E-hGALE, demonstrated little, if any, detectable activity, despite near-normal abundance. G90E originally was identified in a heterozygous patient whose other allele remains uncharacterized. Thermal lability and protease-sensitivity studies demonstrated compromised stability in all of the partially active mutant enzymes.  相似文献   

12.
The M3 muscarinic receptor is a prototypical member of the class I family of G protein-coupled receptors (GPCRs). To facilitate studies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth. By using receptor random mutagenesis followed by a genetic screen in yeast, we initially identified a point mutation at the cytoplasmic end of transmembrane domain (TM) VI (Q490L) that led to robust agonist-independent M3 receptor signaling in both yeast and mammalian cells. To explore further the molecular mechanisms by which point mutations can render GPCRs constitutively active, we subjected a region of the Q490L mutant M3 receptor that included TM V-VII to random mutagenesis. We then applied a yeast genetic screen to identify second-site mutations that could suppress the activating effects of the Q490L mutation and restore wild-type receptor-like function to the Q490L mutant receptor. This analysis led to the identification of 12 point mutations that allowed the Q490L mutant receptor to function in a fashion similar to the wild-type receptor. These amino acid substitutions mapped to two distinct regions of the M3 receptor, the exofacial segments of TM V and VI and the cytoplasmic ends of TM V-VII. Strikingly, in the absence of the activating Q490L mutation, all recovered point mutations severely reduced the efficiency of receptor/G protein coupling, indicating that the targeted residues play important roles in receptor activation and/or receptor/G protein coupling. This strategy should be generally applicable to identify sites in GPCRs that are critically involved in receptor function.  相似文献   

13.
Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four “unknown severity mutants” with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.  相似文献   

14.
The crystal structure of three mutants of Escherichia coli alkaline phosphatase with catalytic activity (k(cat)) enhancement as compare to the wild-type enzyme is described in different states. The biological aspects of this study have been reported elsewhere. The structure of the first mutant, D330N, which is threefold more active than the wild-type enzyme, was determined with phosphate in the active site, or with aluminium fluoride, which mimics the transition state. These structures reveal, in particular, that this first mutation does not alter the active site. The second mutant, D153H-D330N, is 17-fold more active than the wild-type enzyme and activated by magnesium, but its activity drops after few days. The structure of this mutant was solved under four different conditions. The phosphate-free enzyme was studied in an inactivated form with zinc at site M3, or after activation by magnesium. The comparison of these two forms free of phosphate illustrates the mechanism of the magnesium activation of the catalytic serine residue. In the presence of magnesium, the structure was determined with phosphate, or aluminium fluoride. The drop in activity of the mutant D153H-D330N could be explained by the instability of the metal ion at M3. The analysis of this mutant helped in the design of the third mutant, D153G-D330N. This mutant is up to 40-fold more active than the wild-type enzyme, with a restored robustness of the enzyme stability. The structure is presented here with covalently bound phosphate in the active site, representing the first phosphoseryl intermediate of a highly active alkaline phosphatase. This study shows how structural analysis may help to progress in the improvement of an enzyme catalytic activity (k(cat)), and explains the structural events associated with this artificial evolution.  相似文献   

15.
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group.  相似文献   

16.
Chitosanase (ChoA) from Mitsuaria chitosanitabida 3001 was successfully evolved with secretion efficiency and thermal stability. The inactive ChoA mutant (G151D) gene was used to mutate by an error-prone PCR technique and mutant genes that restored chitosanase activity were isolated. Two desirable mutants, designated M5S and M7T, were isolated. Two amino acids, Leu74 and Val75, in the signal peptide of ChoA were changed to Gln and Ile respectively in the M7T mutant, in addition to the G151D mutation. The L74Q/V75I double ChoA mutant was 1.5-fold higher in specific activity than wild-type ChoA due to efficient secretion of ChoA. One amino acid Asn222 was changed to Ser in the M5S mutant in addition to the G151D mutation. The N222S single ChoA mutant was 1.2-fold higher in specific activity and showed a 17% increase in thermal stability at 50 °C as compared with wild-type ChoA. This is the first study to achieve an evolutional increase in enzyme capability among chitosanses.  相似文献   

17.
Chitosanase (ChoA) from Mitsuaria chitosanitabida 3001 was successfully evolved with secretion efficiency and thermal stability. The inactive ChoA mutant (G151D) gene was used to mutate by an error-prone PCR technique and mutant genes that restored chitosanase activity were isolated. Two desirable mutants, designated M5S and M7T, were isolated. Two amino acids, Leu74 and Val75, in the signal peptide of ChoA were changed to Gln and Ile respectively in the M7T mutant, in addition to the G151D mutation. The L74Q/V75I double ChoA mutant was 1.5-fold higher in specific activity than wild-type ChoA due to efficient secretion of ChoA. One amino acid Asn222 was changed to Ser in the M5S mutant in addition to the G151D mutation. The N222S single ChoA mutant was 1.2-fold higher in specific activity and showed a 17% increase in thermal stability at 50 degrees C as compared with wild-type ChoA. This is the first study to achieve an evolutional increase in enzyme capability among chitosanses.  相似文献   

18.
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin (5-HT). Once thought to be a single gene product, TPH is now known to exist in two isoforms. Isoform 1 (TPH1) is found in the pineal gland and gut, and isoform 2 (TPH2) is selectively expressed in brain. A single-nucleotide polymorphism in TPH2 results in a proline-to-arginine mutation at residue 447 and substantially lowers catalytic activity. In view of the importance of TPH in determining brain 5-HT function, we cloned TPH2 and produced the P447R mutant to assess the importance of this proline in enzyme function. Catalytically active TPH2 and the P447R mutant were expressed at the predicted subunit molecular mass of 56 kDa. The P447R mutant expressed less than 50% of the activity of TPH2. Mutation of this conserved proline in TPH1 (P403R) also resulted in an enzyme with significantly lower activity than the wild-type enzyme. The P447R mutant had a V(max) 50% lower than that of TPH2. The P447R mutation did not alter the oligomeric assembly of the protein, nor change its responsiveness to cysteine modification. The P447R mutation did not alter enzyme substrate specificity or stability, but conferred slightly enhanced sensitivity to inhibition by dopamine and diminished sensitivity to iron in catalysis. The conserved proline in TPH (residue 447 in TPH2 and 403 in TPH1) plays an important role in enzyme function by regulating V(max) of the catalytic reaction.  相似文献   

19.
Hypophosphatasia (HOPS) is a clinically heterogeneous heritable disorder characterized by defective skeletal mineralization, deficiency of tissue-nonspecific alkaline phosphatase (TNSALP) activity, and premature loss of deciduous teeth. To date, various mutations in the TNSALP gene have been identified. Especially, A115V located in exon 5 has been detected in a Japanese patient with severe periodontitis and adult-type HOPS. In this study, we have characterized the protein translated from the mutant A115V gene. Wild-type and A115V mutant-type TNSALP cDNA expression vector pcDNA3 have been constructed and transfected to COS-1 cells by lipofectin technique. After 48-h transfection, the cells were subjected to assay ALP activity. In order to identify possible dominant effect of the mutation, we performed co-transfections of wild-type and mutated cDNA, and evaluated the residual activities of each mutation. Detection of TNSALP synthesized by COS-1 cells transfected with the wild- or the mutated-type was also performed by using an immunofluorescent method. ALP activity of cell transfected with the mutant cDNA (A115V) plasmid after 48-h transfection exhibited 0.399+/-0.021 U/mg. As the enzymatic activity of the wild type was taken as 100%, the value of the mutant was estimated as 16.9%. When co-transfected this mutant showed no inhibition of the wild-type enzyme. TNSALP in COS-1 cells with transfected with the mutant exhibited strong fluorescence at the surface of cells as wild-type. This study indicated that the mutant (A115V) TNSALP gene produced the defective ALP enzyme and it could be recessively transmitted and be a disease-causing mutation of the adult-type hypophosphatasia.  相似文献   

20.
Propionic acidemia (PA) is a recessive disorder caused by a deficiency of propionyl-CoA carboxylase (PCC), a dodecameric enzyme composed of two different proteins alpha-PCC and beta-PCC, nuclear encoded by the PCCA and PCCB genes, respectively. Mutations in either gene cause PA and to date, up to 47 different allelic variations in the PCCB gene have been identified in different populations. In this work, we describe the expression studies of 18 PCCB sequence changes in order to elucidate their functional consequences. We have used a PCCB-deficient transformed fibroblast cell line to target the wild-type and mutant proteins to their physiological situation, analysing the effect of the mutations on PCC activity and protein stability. Of the 18 mutant proteins tested for activity, those carrying the L17M and A497V substitutions showed an activity similar to the wild-type one, which proves that these changes do not have any effect on protein activity. The other 16 mutant proteins exhibited two different functional behaviours, 3 retained substantial activity (K218R, R410W and N536D), and the remaining 13 proteins showed null or very low activity. Western blot analysis demonstrated instability only for the L519P, R512C and G112D mutant proteins. We have proved the pathogenicity of R67S, R165Q and G112D mutation in PCCB gene, expressed for the first time in this work. The information derived from the expression analysis is discussed in the phenotype and genotype context in order to improve the knowledge of this complex disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号