首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies challenge the view that signals provided by motor neurons are required to activate subsynaptic nuclei and induce postsynaptic specializations in developing skeletal muscle. New findings show that acetylcholine receptor genes are expressed and that acetylcholine receptor clusters form preferentially in the prospective synaptic region of muscle independently of motor innervation. These results indicate that developing myotubes are patterned by mechanisms intrinsic to developing muscles and raise the possibility that patterning of muscles may influence the growth pattern of motor axons and the sites where synapses form.  相似文献   

2.
Acetylcholinesterase (EC 3.1.1.7, AChE) is one of the components of the neuromuscular junction (NMJ). Its expression and targeting in the skeletal muscle fiber is therefore under the control of the mechanisms responsible for the formation of the highly complex structure of this synapse. Recently, it has been demonstrated that myotubes of the C2C12 mouse muscle cell line form highly differentiated pretzel-like postsynaptic accumulations of acetylcholine receptors (AChRs) in the complete absence of the nerve if they are cultured on the laminin coating. This finding questions previously stressed importance of the nerve-derived factors in NMJ synaptogenesis and therefore deserves additional testing. The aim of this paper was to test whether the reported nerve-independency can be demonstrated also in the cultured human muscle meaning that the findings on C2C12 cultures can be extrapolated also to the human muscle. In our experiments aneurally cultured human myotubes failed to form AChR clusters on its surface, no matter if they were grown on normal gelatine or laminin coating. However, when innervated by neurons extending from the rat embryonic spinal cord, human myotubes formed AChR clusters with elaborate topography but strictly on the areas contacted by the nerve. One can hypothesize that higher nerve dependency of the NMJ synaptogenesis in humans in comparison to other species reflects species-specific differences in the organization of movement. Humans have the highest "fractionation of movement" capacity which probably requests different, more nerve-controlled development of the motor system including nerve-restricted development of the neuromuscular contacts.  相似文献   

3.
CASK, the rat homolog of a gene (LIN-2) required for vulval differentiation in Caenorhabditis elegans, is expressed in mammalian brain, but its function in neurons is unknown. CASK is distributed in a punctate somatodendritic pattern in neurons. By immunogold EM, CASK protein is concentrated in synapses, but is also present at nonsynaptic membranes and in intracellular compartments. This immunolocalization is consistent with biochemical studies showing the presence of CASK in soluble and synaptosomal membrane fractions and its enrichment in postsynaptic density fractions of rat brain. By yeast two-hybrid screening, a specific interaction was identified between the PDZ domain of CASK and the COOH terminal tail of syndecan-2, a cell surface heparan sulfate proteoglycan (HSPG). The interaction was confirmed by coimmunoprecipitation from heterologous cells. In brain, syndecan-2 localizes specifically at synaptic junctions where it shows overlapping distribution with CASK, consistent with an interaction between these proteins in synapses. Cell surface HSPGs can bind to extracellular matrix proteins, and are required for the action of various heparin-binding polypeptide growth/differentiation factors. The synaptic localization of CASK and syndecan suggests a potential role for these proteins in adhesion and signaling at neuronal synapses.  相似文献   

4.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

5.
Adducin is a cytoskeletal protein having regulatory roles that involve actin filaments, functions that are inhibited by phosphorylation of adducin by protein kinase C. Adducin is hyperphosphorylated in nervous system tissue in patients with the neurodegenerative disease amyotrophic lateral sclerosis, and mice lacking β-adducin have impaired synaptic plasticity and learning. We have found that Drosophila adducin, encoded by hu-li tai shao (hts), is localized to the post-synaptic larval neuromuscular junction (NMJ) in a complex with the scaffolding protein Discs large (Dlg), a regulator of synaptic plasticity during growth of the NMJ. hts mutant NMJs are underdeveloped, whereas over-expression of Hts promotes Dlg phosphorylation, delocalizes Dlg away from the NMJ, and causes NMJ overgrowth. Dlg is a component of septate junctions at the lateral membrane of epithelial cells, and we show that Hts regulates Dlg localization in the amnioserosa, an embryonic epithelium, and that embryos doubly mutant for hts and dlg exhibit defects in epithelial morphogenesis. The phosphorylation of Dlg by the kinases PAR-1 and CaMKII has been shown to disrupt Dlg targeting to the NMJ and we present evidence that Hts regulates Dlg targeting to the NMJ in muscle and the lateral membrane of epithelial cells by controlling the protein levels of PAR-1 and CaMKII, and consequently the extent of Dlg phosphorylation.  相似文献   

6.
Lrp4 is a receptor for Agrin and forms a complex with MuSK   总被引:1,自引:0,他引:1  
Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK, and mediates MuSK activation by Agrin.  相似文献   

7.
The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.  相似文献   

8.
Agrin, a synapse-organizing protein externalized by motor axons at the neuromuscular junction (NMJ), initiates a signaling cascade in muscle cells leading to aggregation of postsynaptic proteins, including acetylcholine receptors (AChRs). We examined whether nitric oxide synthase (NOS) activity is required for agrin-induced aggregation of postsynaptic AChRs at the embryonic NMJ in vivo and in cultured muscle cells. Inhibition of NOS reduced AChR aggregation at embryonic Xenopus NMJs by 50-90%, whereas overexpression of NOS increased AChR aggregate area 2- to 3-fold at these synapses. NOS inhibitors completely blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. Application of NO donors to muscle cells induced AChR clustering in the absence of agrin. Our results indicate that NOS activity is necessary for postsynaptic differentiation of embryonic NMJs and that NOS is a likely participant in the agrin-MuSK signaling pathway of skeletal muscle cells.  相似文献   

9.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-β) superfamily, have been shown to play important roles in the nervous system, including neuronal survival and synaptogenesis. However, the physiological functions of BMP signaling in the mammalian neuromuscular system are not well understood. In this study, we found that proteins of the type II bone morphogenetic receptors (BMPRII) were detected at the neuromuscular junction (NMJ), and one of its ligands, BMP4, was expressed by Schwann cells and skeletal muscle fibers. In double-ligated nerves, BMP4 proteins accumulated at the proximal and distal portions of the axons, suggesting that Schwann cell- and muscle fiber-derived BMP4 proteins were anterogradely and retrogradely transported by motor neurons. Furthermore, BMP4 mRNA was down-regulated in nerves but up-regulated in skeletal muscles following nerve ligation. The motor neuron-muscle interactions were also demonstrated using differentiated C2C12 muscle cells and NG108-15 neurons in vitro. BMP4 mRNA and immunoreactivity were significantly up-regulated in differentiated C2C12 muscle cells when the motor neuron-derived factor, agrin, was present in the culture. Peripherally-derived BMP4, on the other hand, promotes embryonic motor neuron survival and protects NG108-15 neurons from glutamate-induced excitotoxicity. Together, these data suggest that BMP4 is a peripherally-derived factor that may regulate the survival of motor neurons.  相似文献   

10.
Motor neurons contain agrin-like molecules   总被引:8,自引:7,他引:1       下载免费PDF全文
Molecules antigenically similar to agrin, a protein extracted from the electric organ of Torpedo californica, are highly concentrated in the synaptic basal lamina of neuromuscular junctions in vertebrate skeletal muscle. On the basis of several lines of evidence it has been proposed that agrin-like molecules mediate the nerve-induced formation of acetylcholine receptor (AChR) and acetylcholinesterase (AChE) aggregates on the surface of muscle fibers at developing and regenerating neuromuscular junctions and that they help maintain these postsynaptic specializations in the adult. Here we show that anti-agrin monoclonal antibodies selectively stain the cell bodies of motor neurons in embryos and adults, and that the stain is concentrated in the Golgi apparatus. We also present evidence that motor neurons in both embryos and adults contain molecules that cause the formation of AChR and AChE aggregates on cultured myotubes and that these AChR/AChE-aggregating molecules are antigenically similar to agrin. These findings are consistent with the hypothesis that agrin-like molecules are synthesized by motor neurons, and are released from their axon terminals to become incorporated into the synaptic basal lamina where they direct the formation of synapses during development and regeneration.  相似文献   

11.
Polarized epithelial cells play critical roles during early embryonic development and organogenesis. Multi-domain scaffolding proteins belonging to the membrane associated guanylate kinase (MAGUK) family are commonly found at the plasma membrane of polarized epithelial cells. Genetic studies in Drosophila melanogaster and Caenorhabditis elegans have revealed that MAGUK proteins regulate various aspects of the polarized epithelial phenotype, including cell junction assembly, targeting of proteins to the plasma membrane and the organisation of polarized signalling complexes. This review will focus on the genetic studies that have contributed to our understanding of the MAGUK family members, Dlg and Lin-2/CASK, in controlling these processes. In addition, our recent genetic analysis of mouse Dlg, in combination with genetic and biochemical studies of Lin-2/CASK by others suggests a model placing Dlg and Lin-2/CASK within the same developmental pathway.  相似文献   

12.
Neuregulins and their Erbb receptors have been implicated in neuromuscular synapse formation by regulating gene expression in subsynaptic nuclei. To analyze the function of Erbb2 in this process, we have inactivated the Erbb2 gene in developing muscle fibers by Cre/Lox-mediated gene ablation. Neuromuscular synapses form in the mutant mice, but the synapses are less efficient and contain reduced levels of acetylcholine receptors. Surprisingly, the mutant mice also show proprioceptive defects caused by abnormal muscle spindle development. Sensory Ia afferent neurons establish initial contact with Erbb2-deficient myotubes. However, functional spindles never develop. Taken together, our data suggest that Erbb2 signaling regulates the formation of both neuromuscular synapses and muscle spindles.  相似文献   

13.
Receptors and various molecules in neurons are localized at precise locations to perform their respective functions, especially in synaptic sites. Among synaptic molecules, PDZ domain proteins play major roles in scaffolding and anchoring membrane proteins for efficient synaptic transmission. In the present study, we isolated CIP98, a novel protein (98 kDa) consisting of three PDZ domains and a proline-rich region, which is widely expressed in the central nervous system. In situ hybridization and immunohistochemical staining patterns demonstrate that CIP98 is expressed strongly in certain types of neurons, i.e. pyramidal cells in layers III-V of the cerebral cortex, projecting neurons in the thalamus and interneurons in the cerebellum. The results of immunocytochemical staining and electron microscopy revealed that CIP98 is localized both in dendrites and axons. Interestingly, CIP98 interacts with CASK (calmodulin-dependent serine kinase), a member of the membrane-associated guanylate kinase (MAGUK) family that plays important roles in the molecular organization of proteins at synapses. CIP98 was shown to co-localize with CASK along the dendritic processes of neurons. In view of its direct association with CASK, CIP98 may be involved in the formation of CASK scaffolding proteins complex to facilitate synaptic transmission in the CNS.  相似文献   

14.
We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR) redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events connecting substrate laminin stimulation to complex AChR cluster formation. We validate the utility of this method for biochemical and microscopy studies by demonstrating the roles of RhoGTPases in substrate laminin-induced complex cluster assembly.  相似文献   

15.
The clustering of acetylcholine receptors (AChRs) in skeletal muscle fibers is a critical event in neuromuscular synaptogenesis. AChRs in concert with other molecules form postsynaptic scaffolds in response to agrin released from motor neurons as motor neurons near skeletal muscle fibers in development. Agrin drives an intracellular signaling pathway that precedes AChR clustering and includes the tyrosine phosphorylation of AChRs. In C2C12 myotube culture, agrin application stimulates the agrin signaling pathway and AChR clustering. Previous studies have determined that the frequency of spontaneous AChR clustering is decreased and AChRs are partially inactivated when bound by the acetylcholine agonist nicotine. We hypothesized that nicotine interferes with AChR clustering and consequent postsynaptic scaffold formation. In the present study, C2C12 myoblasts were cultured with growth medium to stimulate proliferation and then differentiation medium to stimulate fusion into myotubes. They were bathed in a physiologically relevant concentration of nicotine and then subject to agrin treatment after myotube formation. Our results demonstrate that nicotine decreases agrin-induced tyrosine phosphorylation of AChRs and decreases the frequency of spontaneous as well as agrin-induced AChR clustering. We conclude that nicotine interferes with postsynaptic scaffold formation by preventing the tyrosine phosphorylation of AChRs, an agrin signaling event that precedes AChR clustering.  相似文献   

16.
The rate-limiting step in neuronal acetylcholine (ACh) synthesis is the uptake of choline via a high-affinity transporter. We have generated antisera against the recently identified transporter CHT1 to investigate its distribution in rat motor neurons and skeletal muscle and have used these antisera in combination with (1) antisera against the vesicular acetylcholine transporter (VAChT) to identify cholinergic synapses and (2) Alexa-488-labelled alpha-bungarotoxin to identify motor endplates. In the motor unit, immunohistochemistry and RT-PCR have demonstrated that CHT1 is restricted to motoneurons and absent from the non-neuronal ACh-synthesizing elements, e.g. skeletal muscle fibres. In addition, CHT1 is also present in parasympathetic neurons of the tongue, as evidenced by immunohistochemistry and RT-PCR. CHT1 immunoreativity is principally found at all segments (perikaryon, dendrites, axon) of the motoneuron but is enriched at neuro-neuronal and neuro-muscular synapses. This preferential localisation matches well with its anticipated pivotal role in synaptic transmitter recycling and synthesis.  相似文献   

17.
Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ.  相似文献   

18.
19.
β-Catenin, a key component of the Wnt signaling pathway, has been implicated in the development of the neuromuscular junction (NMJ) in mice, but its precise role in this process remains unclear. Here we use a β-catenin gain-of-function mouse model to stabilize β-catenin selectively in either skeletal muscles or motor neurons. We found that β-catenin stabilization in skeletal muscles resulted in increased motor axon number and excessive intramuscular nerve defasciculation and branching. In contrast, β-catenin stabilization in motor neurons had no adverse effect on motor innervation pattern. Furthermore, stabilization of β-catenin, either in skeletal muscles or in motor neurons, had no adverse effect on the formation and function of the NMJ. Our findings demonstrate that β-catenin levels in developing muscles in mice are crucial for proper muscle innervation, rather than specifically affecting synapse formation at the NMJ, and that the regulation of muscle innervation by β-catenin is mediated by a non-cell autonomous mechanism.  相似文献   

20.
N E Reist  M J Werle  U J McMahan 《Neuron》1992,8(5):865-868
To test the hypothesis that agrin mediates motor neuron-induced aggregation of acetylcholine receptors (AChRs) in skeletal muscle fibers and to determine whether the agrin active in this process is released by motor neurons, we raised polyclonal antibodies to purified ray agrin that blocked its receptor aggregating activity. When the antibodies were applied to chick motor neuron--chick myotube cocultures, they inhibited the formation of AChR aggregates at and near neuromuscular contacts, demonstrating that agrin plays a role in the induction of the aggregates. Rat motor neurons, like chick motor neurons, induce AChR aggregates on chick myotubes. This effect was not inhibited by our antibodies, indicating that, although the antibodies inhibited the activity of chick agrin, they did not have a similar effect on rat agrin. We conclude that agrin released by rat motor neurons induced the chick myotubes to aggregate AChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号