首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reproductive value hypothesis predicts that if residual reproductive value declines as a female ages, then young females should allocate less of available energy to current fecundity and more to future reproduction; whereas, older females should allocate more of available energy to current fecundity and less to future reproduction (i.e. survival). We test the prediction that older female Gambusia affinis exhibit higher levels of allocation to reproduction (i.e. fecundity) and consequently experience greater decline in escape performance (survival cost) during pregnancy compared to young females. Old females had relatively larger clutch wet masses and clutch wet mass increased more during pregnancy compared to young females. Correspondingly, old females exhibit a significant decline in escape velocity over the course of pregnancy; whereas young females show no change in escape velocity throughout pregnancy. Old females have higher escape velocities early in pregnancy and their performance only declines to about the level of performance of young females by the end of pregnancy. Thus, although old females exhibit a greater decline in performance they are better able to ameliorate the cost of decreased performance.  相似文献   

2.
Sorbus torminalis L. Crantz is a colonizing tree species usually found at low density in managed European forests. Using six microsatellite markers, we investigated spatial and temporal patterns of genetic structure within a 472-ha population of 185 individuals to infer processes shaping the distribution of genetic diversity. Only eight young stems were found to be the result of vegetative reproduction. Despite high levels of gene flow (standard deviation of gene dispersal = 360 m), marked patterns of isolation by distance were detected, associated with an aggregated distribution of individuals in approximately 100-m patches. This spatial structure of both genes and individuals is likely to result from patterns of seedling recruitment combined with low tree density. Our results suggest that landscape factors and logging cycles markedly shape the distribution of favourable sites for seedling establishment, which are then colonized by sibling cohorts as a result of joint seed transportation by frugivores. These combined genetic and demographic processes result in similar genetic structure both within and among logging units. However, conversion to high forest may enhance genetic structuring.  相似文献   

3.
Seasonal reproduction causes, due to the periodic inflow of young small individuals in the population, seasonal fluctuations in population size distributions. Seasonal reproduction furthermore implies that the energetic body condition of reproducing individuals varies over time. Through these mechanisms, seasonal reproduction likely affects population and community dynamics. While seasonal reproduction is often incorporated in population models using discrete time equations, these are not suitable for size-structured populations in which individuals grow continuously between reproductive events. Size-structured population models that consider seasonal reproduction, an explicit growing season and individual-level energetic processes exist in the form of physiologically structured population models. However, modeling large species ensembles with these models is virtually impossible. In this study, we therefore develop a simpler model framework by approximating a cohort-based size-structured population model with seasonal reproduction to a stage-structured biomass model of four ODEs. The model translates individual-level assumptions about food ingestion, bioenergetics, growth, investment in reproduction, storage of reproductive energy, and seasonal reproduction in stage-based processes at the population level. Numerical analysis of the two models shows similar values for the average biomass of juveniles, adults, and resource unless large-amplitude cycles with a single cohort dominating the population occur. The model framework can be extended by adding species or multiple juvenile and/or adult stages. This opens up possibilities to investigate population dynamics of interacting species while incorporating ontogenetic development and complex life histories in combination with seasonal reproduction.  相似文献   

4.
This study addressed whether there are any age‐related differences in reproductive costs. Of especial interest was whether young individuals increased their reproductive effort, and thereby their reproductive cost, as much as older birds when brood size was enlarged. To address these questions, a brood‐size manipulation experiment with reciprocal cross‐fostering of nestlings of young and middle‐aged female Collared flycatchers, Ficedula albicollis, was performed on the Swedish island of Gotland. Nestlings’ body mass, tarsus length and survival were recorded to estimate the parental ability and parental effort of the experimental female birds. Female survival and clutch size were recorded in the following years to estimate reproductive costs. We found that middle‐aged female flycatchers coped better with enlarged broods than younger females or invested more in reproduction. In the following year, young female birds that had raised enlarged broods laid smaller clutches than the females from all the other experimental groups. This result shows that the young female birds pay higher reproductive costs than the middle‐aged females. Both young and middle‐aged female flycatchers seemed to increase their reproductive effort when brood size was increased. However, such an increase resulted in higher reproductive costs for the young females. The difference in reproductive costs between birds of different ages is most likely a result of insufficient breeding skills of the young individuals.  相似文献   

5.
The trade‐off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade‐offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade‐offs change based on females’ age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high‐quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade‐off between age at first mating and eggs laid appears to be mediated through higher egg‐laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg‐laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade‐off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.  相似文献   

6.
Life history trade-offs are ubiquitous in nature. Life history theory posits that these trade-offs arise from individuals having limited resources to allocate toward all vital functions, such as survival, growth and reproduction. These trade-offs position most species along a slow-fast life history continuum, where individuals with slow life histories often have higher survival at the cost of delayed reproduction and individuals with fast life histories often live faster and die younger. However, these trade-offs are sometimes less obvious for invasive species. Here, we constructed age-based population models to compare life history strategies and trade-offs between the noninvasive, native mustard white and invasive, exotic cabbage white (Pieris spp.) butterflies. We found that the cabbage white has faster larval growth and higher fecundity at younger ages, suggesting it has a fast life history compared to the mustard white. However, cabbage white also has higher adult survival at younger ages, suggesting that it experiences weaker trade-offs among vital rates than its native counterpart. Our study illustrates the importance of demographic studies in evaluating life history strategies among congener species with different population histories, and emphasizes the many advantages experienced by invasive species in their novel environments.  相似文献   

7.
It is widely hypothesized that the evolution of female extra-pair reproduction in socially monogamous species reflects indirect genetic benefits to females. However, a critical prediction of this hypothesis, that extra-pair young (EPY) are fitter than within-pair young (WPY), has rarely been rigorously tested. We used 18 years of data from free-living song sparrows, Melospiza melodia, to test whether survival through major life-history stages differed between EPY and WPY maternal half-siblings. On average, survival of hatched chicks to independence from parental care and recruitment, and their total lifespan, did not differ significantly between EPY and WPY. However, EPY consistently tended to be less likely to survive, and recruited EPY survived for significantly fewer years than recruited WPY. Furthermore, the survival difference between EPY and WPY was sex-specific; female EPY were less likely to survive to independence and recruitment and lived fewer years than female WPY, whereas male EPY were similarly or slightly more likely to survive and to live more years than male WPY. These data indicate that extra-pair paternity may impose an indirect cost on females via their female offspring and that sex-specific genetic, environmental or maternal effects may shape extra-pair reproduction.  相似文献   

8.
The costs of reproduction are expected to be higher under unfavourable conditions, so that breeding in years of low food supply should have important costs. In addition, the costs of reproduction may be contingent on the age of individuals, and young growing and old senescent individuals should suffer higher costs than the prime-age ones. We tested these predictions by investigating the costs of reproduction as a function of food availability and age in female North American red squirrels using the long-term data on survival and reproduction. We found that the costs of reproduction were independent of food supply, and we did not detect any trade-off between the current and future reproduction. We also did not detect any survival cost of reproduction for the prime-age females, but found evidence for survival costs in yearlings and old (6 years or above) females with successfully breeding individuals having a lower chance of survival compared with unsuccessful or non-breeding ones. These results supported our prediction that the costs of reproduction depended on the age of female red squirrels and were higher in young growing and old senescent individuals. Our study also indicated that, in contrast to large herbivores, heterogeneity in individual quality and viability selection in red squirrels do not affect the study of trade-offs and of the age variation in life-history traits.  相似文献   

9.
1. Salmonids, like many other fish species, exhibit morphological plasticity to variations in water current velocity. However, little is known about how this response varies with age and alternative sexual tactics that usually coexist in the same area. We therefore sampled immature 1- and 2-year-old and sexually mature Salmo salar parr to determine how the morphological response to slow and rapid water currents varies across these groups.
2. Both 1- and 2-year-old immature parr in rapid habitats can be distinguished from individuals in slow habitats using a combination of fin measurements. In contrast, body shape measurements were useful only to distinguish 2-year-old individuals in the different habitat types. We also showed that mature parr are notably robust, irrespective of habitat type. For these individuals, only their body length differed between slow and rapid water currents, being bigger in slow water currents.
3. Our results imply that fins are the first structures to respond to water current velocity, followed by changes in body shape as individuals grow bigger. The robust phenotype observed for mature parr is likely to pose extra limitations on movement due to an increase in drag forces, thus contributing to their smaller size in rapid water currents.  相似文献   

10.
In female roe deerCapreolus capreolus (Linnaeus, 1758), like in several deer species, first reproduction occurs before they have reached their full body size. This study quantifies, in young females, the energetic costs induced by the contemporaneously occurring events: growth and first reproduction. Resting metabolic rate and body mass were measured in young primiparous females from first mating to 4 months after parturition, and compared to values measured in fully-grown adult multiparous females. Throughout the 10-month period from mating to fawning, body mass increased in yearlings. Prior to the blastocyst implantation (month −5 before parturition) young females were lighter than adult females whereas after parturition they had the same body mass. Our results suggest that body growth was reinitiated during pregnancy in primiparous females. From mating to fawning, except in the first part of pregnancy, mass-specific metabolism was higher in primiparous females than in multiparous individuals indicating the occurrence of an additional cost due to growth in young females. The depressed level observed at the beginning of gestation could allow the resumption of growth at lower cost. Thus, the allocation of resources to both reproduction and growth was not detrimental to first reproduction in young female roe deer under experimental conditions withad lib feeding.  相似文献   

11.
Sex differences in lifespan and aging are widespread among animals. Since investment in current reproduction can have consequences on other life-history traits, the sex with the highest cost of breeding is expected to suffer from an earlier and/or stronger senescence. This has been demonstrated in polygynous species that are highly dimorphic. However in monogamous species where parental investment is similar between sexes, sex-specific differences in aging patterns of life-history traits are expected to be attenuated. Here, we examined sex and age influences on demographic traits in a very long-lived and sexually dimorphic monogamous species, the wandering albatross (Diomedea exulans). We modelled within the same model framework sex-dependent variations in aging for an array of five life-history traits: adult survival, probability of returning to the breeding colony, probability of breeding and two measures of breeding success (hatching and fledging). We show that life-history traits presented contrasted aging patterns according to sex whereas traits were all similar at young ages. Both sexes exhibited actuarial and reproductive senescence, but, as the decrease in breeding success remained similar for males and females, the survival and breeding probabilities of males were significantly more affected than females. We discuss our results in the light of the costs associated to reproduction, age-related pairing and a biased operational sex-ratio in the population leading to a pool of non-breeders of potentially lower quality and therefore more subject to death or breeding abstention. For a monogamous species with similar parental roles, the patterns observed were surprising and when placed in a gradient of observed age/sex-related variations in life-history traits, wandering albatrosses were intermediate between highly dimorphic polygynous and most monogamous species.  相似文献   

12.
In this study, I investigate body-form variability in the trophically polymorphic Cuatro Cienegas cichlid, Cichlasoma minckleyi. I use geometric morphometrics to assess and compare size, shape, and allometric patterns within and between dental morphs (distinguished by differences in pharyngeal bones and papilliform or molariform dentitions). I find that dental morphs do not differ significantly in size, shape, or allometric slopes, but do differ in allometric intercepts; thus, dental morphs exhibit different patterns of body-form variability. Within each morph, body-form varies between more fusiform 'piscivores' and deeper-bodied dietary generalists. However, papilliform individuals show a continuous distribution of body-forms, whereas molariform individuals exhibit a discontinuity. I compare results from geometric analyses with those from a traditional (distance-based) morphometric analysis, finding that geometric techniques more clearly recognize discontinuities in shape. Finally, I suggest explanations for observed differences in body-form variability between dental morphs, concluding that the best explanation hinges on the relative importance of genetic and environmental factors in influencing body-form.  相似文献   

13.
Abstract Is the cost of reproduction different between males and females? On the one hand, males typically compete intensely for mates, thus sexual selection theory predicts higher cost of reproduction for males in species with intense male‐male competition. On the other hand, care provisioning such as incubating the eggs and raising young may also be costly, thus parental care theory predicts higher mortality for the care‐giving sex, which is often the female. We tested both hypotheses of reproductive costs using phylogenetic comparative analyses of sex‐specific adult mortality rates of 194 bird species across 41 families. First, we show that evolutionary increases in male‐male competition were associated with male‐biased mortalities. This relationship is consistent between two measures of mating competition: social mating system and testis size. Second, as predicted by the parental cost hypothesis, females have significantly higher adult mortalities (mean ± SE, 0.364 ± 0.01) than males (0.328 ± 0.01). However, the mortality cost of parental care was only detectable in males, when the influence of mating competition was statistically controlled. Taken together, our results challenge the traditional explanation of female‐biased avian mortalities, because evolutionary changes in female care were unrelated to changes in mortality bias. The interspecific variation in avian mortality bias, as we show here, is driven by males, specifically via the costs of both mating competition and parental care. We also discuss alternative hypotheses for why most birds exhibit female‐biased mortalities, whereas in mammals male‐biased mortalities predominate.  相似文献   

14.
Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage.  相似文献   

15.
The limited availability of resources is predicted to impose trade‐offs between growth, reproduction and self‐maintenance in animals. However, although some studies have shown that early reproduction suppresses growth, reproduction positively correlates with size in others. We use detailed records from a large population of semi‐captive elephants in Myanmar to assess the relationships between size (height and weight), reproduction and survival in female Asian elephants, a species characterized by slow, costly life history. Although female height gain during the growth period overlapped little with reproductive onset in the population, there was large variation in age at first reproduction and only 81% of final weight had been reached by peak age of reproduction at the population level (19 years). Those females beginning reproduction early tended to be taller and lighter later in life, although these trends were not significant. We found that taller females were more likely to have reproduced by a given age, but such effects diminished with age, suggesting there may be a size threshold to reproduction which is especially important in young females. Because size was not linked with female survival during reproductive ages, the diminishing effect of height on reproduction with age is unlikely to be due to biased survival of larger females. We conclude that although reproduction may not always impose significant costs on growth, height may be a limiting factor to reproduction in young female Asian elephants, which could have important implications considering their birth rates are low and peak reproduction is young – 19 years in this population.  相似文献   

16.
We used a 30-year study of breeding Swainson's hawks (Buteo swainsoni) in northern California to examine correlates of adult apparent survival using multistate models in Program MARK. Specifically, we examined age-related patterns in adult apparent survival and how adult survival was correlated with average annual nest productivity, annual reproductive output, western juniper (Juniperus occidentalis) density around nest sites, distance to agriculture, and amount of agriculture within a territory. Annual estimates of adult survival varied from 0.85 to 0.9 (SE = 0.02). There were no indications of senescence or other patterns of age-related changes in adult apparent survival. Adult survival was inversely correlated with average reproductive output, with individuals producing >2 offspring having decreased survival, reflecting a possible trade-off between reproduction and survival. Conversely, reproduction in any year was positively correlated with survival, providing evidence of individual quality influencing adult survival. The distance an individual had to travel to agriculture, where most individuals forage, was negatively related to survival. Primary productivity within the average Swainson's hawk territory was positively correlated with adult survival. Our results indicate that individuals may have higher survival and fitness in areas with high proportions of irrigated agriculture that provides high prey densities, particularly alfalfa. © 2011 The Wildlife Society.  相似文献   

17.
Avian malaria can affect survival and reproduction of their hosts. Two patterns commonly observed in birds are that females have a higher prevalence of malaria than do males and that prevalence decreases with age. The mechanisms behind these patterns remain unclear. However, most studies on blood parasite infections are based on cross-sectional analyses of prevalence, ignoring malaria related mortality and individual changes in infection. Here, we analyse both within-individual changes in malaria prevalence and long-term survival consequences of infection in the Seychelles Warbler (Acrocephalus sechellensis). Adults were less likely to be infected than juveniles but, contrary to broad patterns previously reported in birds, females were less likely to be infected than males. We show by screening individual birds in two subsequent years that the decline with age is a result both of individual suppression of infection and selective mortality. Birds that were infected early in life had a lower survival rate compared to uninfected birds, but among those that survived to be screened twice the proportion of infected birds had also decreased. Uninfected birds did not become infected later in life. Males were found to be more infected than females in this species possibly because, unlike most birds, males are the dispersing sex and the cost of dispersal may have to be traded against immunity. Infected males took longer to suppress their infection than did females. We conclude that these infections are indeed costly, and that age-related patterns in blood parasite prevalence are influenced both by suppression and selective mortality.  相似文献   

18.
The cost of reproduction is expected to influence survival or future reproduction. Most previous studies have assessed cost of reproduction in relation to natural and experimental variation in number of offspring produced. The ortolan bunting Emberiza hortulana is a passerine bird species with biparental care, and the Norwegian population of the species has an extraordinarily skewed sex ratio with only about half of the males attracting a female, and therefore provides a rare opportunity to compare survival of males that have paired and bred with that of non‐breeders (unpaired males), which have not paid a cost of reproduction. Results showed that survival rates of paired (65.0%) and unpaired (64.2%) males did not differ. However, when comparisons were restricted to paired males that definitely had nestlings, their survival rate (76.8%) was significantly higher than that of unpaired males, and the same was the case when comparisons were further restricted to paired males that had offspring recruiting to the population the next year (76.8% survived). Males breeding successfully are likely to be a biased subset of high quality males. In analyses of a subset of males that had bred successfully when young, there was no difference in survival of paired and unpaired individuals when these males were older. In conclusion, breeding male ortolan buntings did not appear to pay a cost of reproduction in terms of reduced survival to the next year compared to non‐breeding males. These results may be explained by non‐breeding males also incurring extra costs during the breeding season, and that costs of reproduction are not shared equally among sexes in the ortolan bunting and other bird species with biparental care.  相似文献   

19.
Abstract We examined 11 non‐linear regression models to determine which of them best fitted curvilinear species accumulation curves based on pit‐trapping data for reptiles in a range of heterogeneous and homogenous sites in mesic, semi‐arid and arid regions of Western Australia. A well‐defined plateau in a species accumulation curve is required for any of the models accurately to estimate species richness. Two different measures of effort (pit‐trapping days and number of individuals caught) were used to determine if the measure of effort influenced the choice of the best model(s). We used species accumulation curves to predict species richness, determined the trapping effort required to catch a nominated percentage (e.g. 95%) of the predicted number of species in an area, and examined the relationship between species accumulation curves with diversity and rarity. Species richness, diversity and the proportion of rare species in a community influenced the shape of species accumulation curves. The Beta‐P model provided the best overall fit (highest r2) for heterogeneous and homogeneous sites. For heterogeneous sites, Hill, Rational, Clench, Exponential and Weibull models were the next best. For homogeneous habitats, Hill, Weibull and Chapman–Richards were the next best models. There was very little difference between Beta‐P and Hill models in fitting the data to accumulation curves, although the Hill model generally over‐estimated species richness. Most models worked equally well for both measures of trapping effort. Because the number of individuals caught was influenced by both pit‐trapping effort and the abundance of individuals, both measures of effort must be considered if species accumulation curves are to be used as a planning tool. Trapping effort to catch a nominated percentage of the total predicted species in homogeneous and heterogeneous habitats varied among sites, but even for only 75% of the predicted number of species it was generally much higher than the typical effort currently being used for terrestrial vertebrate fauna surveys in Australia. It was not possible to provide a general indication of the effort required to predict species richness for a site, or to capture a nominated proportion of species at a site, because species accumulation curves are heavily influenced by the characteristics of particular sites.  相似文献   

20.
The shape of the species–area relationship (SAR) often varies with the amount of available energy; SARs from high‐energy habitats typically have higher intercepts and steeper slopes than SARs from low‐energy habitats. Such patterns are often assumed to result from a shift in the mechanisms of coexistence between high and low energy habitats. However, a plausible but unexplored alternative mechanism emerges from proportional sampling, if there are simply more individuals in larger or more productive habitats, without the need to invoke differing coexistence mechanisms. Here, we examined proportional versus disproportional responses of a diverse assemblage of freshwater zooplankton to manipulations of experimental pond size and energy inputs. We found that higher energy treatments had higher species richness in large, but not small, ponds, leading to a steeper SAR with higher energy input. The total abundances of individuals also increased with energy in large, but not small ponds. By using a sample‐independent rarefaction technique (probability of interspecific encounter), we found that SAR patterns resulted from changes in the total, but not relative, abundance of individuals, and thus proportional, rather than disproportional, responses of species. Overall, our results emphasize the need to consider how both the total and relative abundances of species respond to ecological drivers such as energy and area before inferring the underlying mechanisms that lead to biodiversity patterns. Further, our results may implicate a proportionally smaller influence of energy on patterns of biodiversity when habitats are destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号