首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Oligodendrocytes (OLs) are responsible for axon myelination and are the principal cells targeted in preterm white matter injury. The cellular and molecular mechanisms involved in white matter development and immature OL injury are incompletely understood. Metabotropic glutamate receptors (mGluRs) modulate neuronal development and survival, and have recently been identified in oligodendrocyte progenitor cells (OPCs). Using the highly homogeneous CG-4 OPC line and O4 marker-immunoselected primary OLs, we established the differentiation stage-specific expression profile of mGluR3 and mGluR5 mRNAs and proteins in the oligodendroglial lineage and type-2-astrocytes (ASTs). Our quantitative analysis indicated no changes in mGluR3, but a significant down-regulation of mGluR5a mRNA and protein expression during differentiation of OPCs into OLs or ASTs. The down-regulation of mGluR5a had functional consequences, with significantly fewer OLs and ASTs than OPCs responding to the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine with intracellular Ca(2+) concentration oscillations. Neither stimulation nor inhibition of mGluR3 or mGluR5 altered OPC migration, suggesting that these receptors do not play prominent roles in the regulation of OPC motility. The activation of mGluR5 completely protected OPCs and substantially reduced staurosporine-induced apoptosis in OLs. This suggests that the down-regulation of mGluR5 in premyelinating OLs is likely to contribute to their increased vulnerability, and that the targeting of mGluR5 may be a potential therapeutic strategy for future development.  相似文献   

2.
The formation of CNS myelin is dependent on the differentiation of oligodendrocyte precursor cells (OPCs) and oligodendrocyte maturation. How the initiation of myelination is regulated is unclear, but it is likely to depend on the development of competence by oligodendrocytes and receptivity by target axons. Here we identify an additional level of control of oligodendrocyte maturation mediated by interactions between the different cellular components of the oligodendrocyte lineage. During development oligodendrocyte precursors mature through a series of stages defined by labeling with monoclonal antibodies A2B5 and O4. Newly differentiated oligodendrocytes begin to express galactocerebroside recognized by O1 antibodies and subsequently mature to myelin basic protein (MBP)-positive cells prior to formation of compact myelin. Using an in vitro brain slice culture system that supports robust myelination, the consequences of ablating cells at different stages of the oligodendrocyte lineage on myelination have been assayed. Elimination of all OPC lineage cells through A2B5+, O4+, and O1+ complement-mediated cell lysis resulted in a delay in development of MBP cells and myelination. Selective elimination of early OPCs (A2B5+) also unexpectedly resulted in delayed MBP expression compared to controls suggesting that early OPCs contribute to the timing of myelination onset. By contrast, elimination of differentiated (O1+) immature oligodendrocytes permanently inhibited the appearance of MBP+ cells suggesting that oligodendrocytes are critical to facilitate the maturation of OPCs. These data illuminate that the presence of intra-lineage feed-forward and feedback cues are important for timely myelination by oligodendrocytes.  相似文献   

3.
The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.  相似文献   

4.
5.
GABA(B) receptors (GABA(B)Rs) are involved in early events during neuronal development. The presence of GABA(B)Rs in developing oligodendrocytes has not been established. Using immunofluorescent co-localization, we have identified GABA(B)R proteins in O4 marker-positive oligodendrocyte precursor cells (OPCs) in 4-day-old mouse brain periventricular white matter. In culture, OPCs, differentiated oligodendrocytes (DOs) and type 2 astrocytes (ASTs) express both the GABA(B1abcdf) and GABA(B2) subunits of the GABA(B)R. Using semiquantitative PCR analysis with GABA(B)R isoform-selective primers we found that the expression level of GABA(B1abd) was substantially higher in OPCs or ASTs than in DOs. In contrast, the GABA(B2) isoform showed a similar level of expression in OPCs and DOs, and a significantly higher level in ASTs. This indicates that the expression of GABA(B1) and GABA(B2) subunits are under independent control during oligodendroglial development. Activation of GABA(B)Rs using the selective agonist baclofen demonstrated that these receptors are functionally active and negatively coupled to adenylyl cyclase. Manipulation of GABA(B)R activity had no effect on OPC migration in a conventional agarose drop assay, whereas baclofen significantly increased OPC migration in a more sensitive transwell microchamber-based assay. Exposure of cultured OPCs to baclofen increased their proliferation, providing evidence for a functional role of GABA(B)Rs in oligodendrocyte development. The presence of GABA(B)Rs in developing oligodendrocytes provides a new mechanism for neuronal-glial interactions during development and may offer a novel target for promoting remyelination following white matter injury.  相似文献   

6.
Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5(+)PSA-NCAM(-) phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.  相似文献   

7.
Testicular orphan nuclear receptor 4 (TR4) has been suggested to play important roles in the development and functioning of the central nervous system (CNS). We find reduced myelination in TR4 knockout (TR4(-/-)) mice, which is particularly obvious in forebrains and in early developmental stages. Further analysis reveals that CC-1-positive (CC-1+) oligodendrocytes are decreased in TR4(-/-) forebrains. The O4+ signals are also reduced in TR4(-/-) forebrains when examined at postnatal d 7. However, the number and proliferation rate of platelet-derived growth factor receptor alpha-positive (PDGFalphaR+) oligodendrocyte precursor cells (OPCs) remain unaffected in these regions, suggesting that loss of TR4 interrupts oligodendrocyte differentiation. This is further supported by the observation that CC-1+ oligodendrocytes derived from 5-bromo-2'-deoxyuridine incorporating OPCs are significantly reduced in TR4(-/-) forebrains. We also find higher Jagged1 expression levels in axon fiber-enriched regions in TR4(-/-) forebrains, suggesting a more activated Notch signaling in these regions that correlates with previous reports showing that Notch activation inhibits oligodendrocyte differentiation. Together, our results suggest that TR4 is required for proper myelination in the CNS and is particularly important for oligodendrocyte differentiation and maturation in the forebrain regions. The altered Jagged1-Notch signaling in TR4(-/-) forebrain underlies a potential mechanism that contributes to the reduced myelination in the forebrain.  相似文献   

8.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   

9.
p38 Mitogen-activated protein kinase (p38 MAPK) is expressed in the oligodendrocyte lineage, and its activity has been implicated in the proliferation and transition of early progenitors into late progenitors. Although p38 MAPK expression has been found in the myelin sheath, however, its role in mature oligodendrocytes remains unknown. In the present study, in order to address the role of p38 MAPK in mature oligodendrocytes, selective inhibitors of p38 MAPK, SB202190, and SB203580 were added to primary cultures of mature oligodendrocytes. After 24h of exposure to the inhibitors, the appearance, and number of A2B5-positive progenitors were unchanged. However, the 2',3'-cyclic nucleotide-3'-phosphohydrolase-positive mature oligodendrocytes disappeared, and the numbers of living cells decreased in comparison to the control cells treated with SB202474, a negative analog of SB203580. Increases in the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive nuclei and in the activity of caspase-3/7 were detected 16 h after exposure to the inhibitors, thus causing the mature oligodendrocytes to die due to apoptosis. Similar results were obtained using a differentiated rat oligodendrocyte precursor cell (OPC) line, central glia-4 (CG-4). These findings indicate that p38 MAPK is vital for mature oligodendrocyte survival.  相似文献   

10.
11.
Changes in intracellular [Ca(2+)](i) levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation.  相似文献   

12.
Quaking I (QKI) is a selective RNA-binding protein essential for myelination of the central nervous system. Three QKI isoforms with distinct C termini and subcellular localization, namely QKI-5, QKI-6, and QKI-7, are expressed in oligodendroglia progenitor cells (OPCs) prior to the initiation of myelin formation and implicated in promoting oligodendrocyte lineage development. However, the functional requirement for each QKI isoform and the mechanisms by which QKI isoforms govern OPC development still remain elusive. We report here that exogenous expression of each QKI isoform is sufficient to enhance differentiation of OPCs with different efficiency, which is abolished by a point mutation that abrogates the RNA binding activity of QKI. Reciprocally, small interfering RNA-mediated QKI knockdown blocks OPC differentiation, which can be partly rescued by QKI-5 and QKI-6 but not by QKI-7, indicating the differential requirement of QKI isoform function in advancing OPC differentiation. Furthermore, we found that abrogation of OPC differentiation, as a result of QKI deficiency, is not due to altered proliferation capacity or cell cycle progression. These results indicate that QKI isoforms are necessary and sufficient for promoting OPC development, which must involve direct influence of QKI on differentiation/maturation of OPCs independent of cell cycle exit, likely via regulating the expression of the target mRNAs of QKI that support OPC differentiation.  相似文献   

13.
Histone deacetylases (HDACs) constitute a super-family of enzymes grouped into four major classes (Class I–IV) that deacetylate histone tails leading to chromatin condensation and gene repression. Whether stroke-induced oligodendrogenesis is related to the expression of individual HDACs in the oligodendrocyte lineage has not been investigated. We found that 2 days after stroke, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes (OLGs) were substantially reduced in the peri-infarct corpus callosum, whereas at 7 days after stroke, a robust increase in OPCs and OLGs was observed. Ischemic brains isolated from rats sacrificed 7 days after stroke were used to test levels of individual members of Class I (1 and 2) and Class II (4 and 5) HDACs in white matter oligodendrocytes during stroke-induced oligodendrogenesis. Double immunohistochemistry analysis revealed that stroke substantially increased the number of NG2+ OPCs with nuclear HDAC1 and HDAC2 immunoreactivity and cytoplasmic HDAC4 which were associated with augmentation of proliferating OPCs, as determined by BrdU and Ki67 double reactive cells after stroke. A decrease in HDAC1 and an increase in HDAC2 immunoreactivity were detected in mature adenomatous polyposis coli (APC) positive OLGs, which paralleled an increase in newly generated BrdU positive OLGs in the peri-infarct corpus callosum. Concurrently, stroke substantially decreased the acetylation levels of histones H3 and H4 in both OPCs and OLGs. Taken together, these findings demonstrate that stroke induces distinct profiles of Class I and Class II HDACs in white matter OPCs and OLGs, suggesting that the individual members of Class I and II HDACs play divergent roles in the regulation of OPC proliferation and differentiation during brain repair after stroke.  相似文献   

14.
Class 3 semaphorin acts as a guidance clue for both cell migration and nerve fiber projection. The signal of class 3 semaphorin travels via a receptor complex consisting of neuropilins and Plexin-A subfamily. Although it has been reported that class 3 semaphorin acts as a repellent for oligodendrocyte precursor cells (OPCs), which migrate actively during brain development, the expression of Plexin-A subfamily has not been reported in OPCs yet. Therefore, it is currently unclear how semaphorin signals can travel in OPCs. In the present study, the expression of Plexin-A4 (PlexA4) was first demonstrated in a newly established OPC line and OPCs in developing brain. In the OPC line, repulsion for process extension was caused by both Sema3A and Sema6A, and the effect of the semaphorins was diminished in cells expressing PlexA4 lacking the cytoplasmic domain. These results strongly suggest that PlexA4 expressed in OPCs acts as a mediator of semaphorin signals.  相似文献   

15.
Differentiation of oligodendrocyte progenitor cells (OPCs) into myelination-capable mature oligodendrocytes is essential for proper function of the central nervous system. OPCs are tissue-resident stem cells that populate all regions of the central nervous system and exist beyond development into adulthood. Disorders that lead to disruption of this critical cell state change cause devastating myelin diseases that are often associated with shortened life span. Recent findings have also provided support for a newly appreciated contribution of perturbed OPC differentiation to neurodegenerative and psychiatric diseases. These findings emphasize the need for a more complete understanding of OPC differentiation in health and disease. Here, we review recent molecular and functional findings revealing new roles of OPCs. It is our hope that this review provides readers with an enticing snapshot of current OPC research and highlights the potential of controlling OPC fate and function to treat diseases of the brain.  相似文献   

16.
Lesions in the CNS of patients with multiple sclerosis (MS) often fail to remyelinate, resulting in neurological dysfunction. A key factor seems to be the inefficiency of oligodendrocyte precursor cells (OPCs). We recently reported antibodies against heat shock protein 90beta (Hsp90beta) in MS patients that recognized the antigen on the OPC surface. This study investigates the mechanism and result of anti-Hsp90beta antibody attack. These antibodies induced OPC death in culture in a complement-dependent fashion. Anti-Hsp90beta antibody-induced, complement-mediated OPC death only operated in these cells and caused a significant reduction in the number of O4-positive pro-oligodendrocytes (pre-oligodendrocytes). Adult cultured OPCs also expressed Hsp90beta on their cell surface and were attacked by anti-Hsp90beta antibodies leading to a significant decrease in the pre-oligodendrocyte population. In the presence of low levels of anti-Hsp90beta antibody--i.e. in the range seen in the CSF of MS patients--the complement concentration was critical to reduce the pre-oligodendrocyte population (via attack to OPCs). Higher concentrations of anti-Hsp90beta antibodies and complement became extinct the pre-oligodendrocytes. Complement 1-esterase inhibitor prevented these effects in the pre-oligodendrocyte population. These findings demonstrate, for the first time in vitro, a feasible mechanism to decrease the production of new oligodendrocytes, thus limiting the possibility of remyelination.  相似文献   

17.
18.
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.  相似文献   

19.
Different CNS regions exhibit different temporal patterns of oligodendrocyte generation and myelinogenesis. Characterization of oligodendrocyte-type-2 astrocyte progenitor cells (here abbreviated as O-2A/OPCs) isolated from different regions indicates these developmental patterns are consistent with properties of the specific O-2A/OPCs resident in each region. Marked differences were seen in self-renewal and differentiation characteristics of O-2A/OPCs isolated from cortex, optic nerve and optic chiasm. In conditions where optic nerve-derived O-2A/OPCs generated oligodendrocytes within 2 days, oligodendrocytes arose from chiasm-derived cells after 5 days and from cortical O-2A/OPCs only after 7-10 days. These differences, which appear to be cell-intrinsic (and may be related to intracellular redox state), were manifested both in reduced percentages of clones producing oligodendrocytes and in a lesser representation of oligodendrocytes in individual clones. In addition, responsiveness of optic nerve-, chiasm- and cortex-derived O-2A/OPCs to thyroid hormone (TH) and ciliary neurotrophic factor (CNTF), well-characterized inducers of oligodendrocyte generation, was inversely related to the extent of self-renewal observed in basal division conditions. Our results demonstrate hitherto unrecognized complexities among the precursor cells thought to be the immediate ancestors of oligodendrocytes, and suggest that the properties of these different populations may contribute to the diverse time courses of myelination in different CNS regions.  相似文献   

20.
Myelin in the mammalian central nervous system (CNS) is produced by oligodendrocytes, most of which arise from oligodendrocyte precursor cells (OPCs) during late embryonic and early postnatal development. Both external and internal cues have been implicated in regulating OPC exit from the cell cycle and differentiation into oligodendrocytes. In this study, we demonstrate that differentiation of cultured OPCs into mature oligodendrocytes is associated with lower levels of activity of telomerase, the ribonucleoprotein that synthesizes telomeric DNA at the ends of chromosomes. Differentiation is also associated with lower levels of mRNA encoding the catalytic subunit of telomerase (TERT), whereas no difference is seen in the expression of its telomeric template RNA component (TR). These data suggest a possible role for telomerase during normal growth and differentiation of oligodendrocytes that may be relevant to the mechanism of myelination in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号