首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of inoculum size, carbon sources (fructose, glucose, maltose, sucrose), nitrate and ammonia on solasodine production by Solanum eleagnifolium Cav. was studied. The specific growth rate was estimated to be 0.15–0.20 d-1 with all sugars tested at a concentration of 90 mM. Sucrose (180 mM) produced the highest biomass value (about 2.8 mg DW ml-1) while the lowest one was produced by maltose. Although solasodine productivity values after 11 days of culture were similar for all sugars tested, the maximum values of productivity (0.9 mg g-1 d-1) were achieved after 6 days of culture with sucrose (180 mM). Solasodine productivity of cultures conducted with a large inoculum (20% w/v fresh material) was double that with a small inoculum (10% w/v fresh material).  相似文献   

2.
该实验以黄果龙葵和龙葵的根尖为实验材料,进行不同的预处理、固定和解离,确定出各种材料适合于核型分析的制片方法。结果表明:龙葵于15℃条件下经0.05%秋水仙素预处理2.5h,固定后用1mol/L HCl酸解后,染色观察,得到的染色体分散,易于染色体计数和形态观察。用此方法对黄果龙葵和龙葵进行核型分析,结果发现:黄果龙葵和龙葵都属于小型染色体,黄果龙葵为四倍体,核型公式为K(4n)=48=4sm+44m,核型不对称系数为56.22%,属于2B核型。龙葵为六倍体,核型公式为K(6n)=72=72m,核型不对称系数为55.89%,属于1B核型。  相似文献   

3.
The ability of two yeast strains to utilize the lactose in whey permeate has been studied. Kluyveromyces marxianus NCYC 179 completely utilized the lactose (9.8%), whereas Saccharomyces cerevisiae NCYC 240 displayed an inability to metabolize whey lactose for ethanol production. Of the two gel matrices tested for immobilizing K. marxianus NCYC 179 cells, sodium alginate at 2% (w/v) concentration proved to be the optimum gel for entrapping the yeast cells effectively. The data on optimization of physiological conditions of fermentation (temperature, pH, ethanol concentration and substrate concentration) showed similar effects on immobilized and free cell suspensions of K. marxianus NCYC 179, in batch fermentation. A maximum yield of 42.6 g ethanol l?1 (82% of theoretical) was obtained from 98 g lactose l?1 when fermentation was carried at pH 5.5 and 30°C using 120 g dry weight l?1 cell load of yeast cells. These results suggest that whey lactose can be metabolized effectively for ethanol production using immobilized K. marxianus NCYC 179 cells.  相似文献   

4.
Escherichia intermedia cells were immobilized by entrapment in a carrageenan gel and used for -DOPA synthesis from catechol, pyruvate, and ammonia. A preparation containing 75 mg of cell per gram of gel retained 60–65% of its original activity. The effect of substrate concentrations on the initial rate of -DOPA synthesis was very similar for free and immobilized cells, and substrate inhibition was observed for the three substrates. In batch reactors, up to 7.8 g l−1 of -DOPA was obtained in 20 h (productivity 0.39 g l−1 h−1). Cells immobilized in a carrageenan gel showed higher -DOPA synthesis, in both initial rates conditions and batch reactors, than cells immobilized in a polyacrylamide gel.  相似文献   

5.
Grafting is regarded as a promising tool to broaden the temperature optimum of elite tomato cultivars. However, suitable low-temperature tolerant tomato rootstocks are not yet available and its breeding is hampered by a lack of variation in low-temperature tolerance within the cultivated tomato. In this study, therefore, the impact of grafting tomato (Solanum lycopersicum Mill. cv. Moneymaker, Sl) onto the rootstock of a cold-tolerant high-altitude accession of a related wild species (Solanum habrochaites LA 1777 Humb. & Bonpl., Sh) was examined at different combinations of optimal (25 °C) and/or suboptimal (15 °C) air/root-zone temperatures (RZT), i.e. 25/25, 25/15, 15/25 and 15/15 °C. Self-grafted tomato plants were used as controls. Both scion/rootstock combinations, Sl/Sl and Sl/Sh, were grown hydroponically and compared for biomass production and partitioning, plant morphology, carbohydrate partitioning and leaf C and N status. Grafting tomato onto Sh increased the relative growth rate of shoots with 26 and 11% at 25/15 and 15/15 °C, respectively. This increase could be attributed to stimulation of the leaf expansion rate. Graft combinations with Sh rootstocks were characterized by higher root mass ratios, particularly at 15 °C RZT. Suboptimal RZT strongly reduced the relative growth rate of Sl roots but not of Sh. This was correlated to differences in inhibition of root elongation. In contrast to tomato grafted onto Sh, leaf total C and total N concentrations increased in self-grafted tomato plants in response to 15 °C RZT. The increase in leaf total C concentration of Sl/Sl graft combinations at 15 °C RZT could be ascribed largely to starch accumulation. This study illustrates that growth of vegetative tomato plants at suboptimal temperature is for a significant part inhibited by its poor root development. Grafting tomato onto a low-temperature rootstock provides an alternative tool to reduce, in part, the grow-limiting effects of suboptimal RZ temperature on the shoot. To improve the low-temperature tolerance of existing commercial tomato rootstocks, S. habrochaites LA 1777 appeared to be a valuable germplasm pool.  相似文献   

6.
A dynamic model describing substrate consumption and growth of immobilized biomass was extended to predict and study the effect of variations in temperature. This was done by including temperature relations for all the individual parameters that are influenced by temperature.

A sensitivity analysis was executed to identify the parameters that determine the temperature sensitivity of the overall process in the different cultivation phases. The model was evaluated by cultivating immobilized Nitrobacter agilis cells in an airlift loop reactor at various temperatures between 6–30°C. The dynamics of the system were studied by imposing temperature changes during the cultivation. The model describes the effect of low temperatures on the macroscopic consumption rate fairly well. As predicted, immobilized cells are less sensitive to temperature changes than suspended cells. The macroscopic consumption rate of immobilized N. agilis cells at 10°C is around 70% of the macroscopic consumption rate at 30°C while in the case of suspended cells, this consumption rate is only 15%.  相似文献   


7.
Oxygen supply at high cell densities of aerobic organisms is a great problem in immobilized cell preparations. To investigate the possibility of in situ oxygen generation the alga Chlorella pyrenoidosa was immobilized on alginate beads. The conditions for optimal oxygen production were investigated and in long term experiments the preparations were successful for at least 30 days.  相似文献   

8.
为了研究马铃薯萜类代谢物的生物合成机制,从马铃薯基因组数据中筛选到一个萜类合酶基因。通过RT-PCR方法,从致病疫霉侵染后的马铃薯品种‘费乌瑞它’中成功克隆到该基因,命名为StHcS,并对其进行生物信息学分析、生化功能鉴定及表达模式分析。结果表明:(1)序列分析显示StHcS编码区序列长1 497 bp,编码498个氨基酸,分子质量为74.78 kD。(2)StHcS基因编码的蛋白序列含有DDXXD催化功能域,与短柱茶(Camellia maliflora)中的四甲基环癸二烯甲醇合酶相似度最高。(3)蛋白体外催化实验和大肠杆菌代谢工程分析表明,StHcS可以催化生成倍半萜化合物四甲基环癸二烯甲醇(hedycaryol)。(4)基因表达分析显示,StHcS可以被致病疫霉侵染诱导表达反式法尼烯焦磷酸(FPP),且在侵染后72 h表达最高;GC-MS分析显示,在受侵染的马铃薯块茎中检测到四甲基环癸二烯甲醇。StHcS生化功能的鉴定为倍半萜合酶的研究提供了多样性,也是首次在马铃薯中发现的四甲基环癸二烯甲醇合酶,为马铃薯萜类代谢途径解析提供了参考。  相似文献   

9.
类钙调蛋白(calmodulin-like protein, CML)是植物中一种重要的Ca~(2+)结合蛋白,在植物生长发育和胁迫响应过程中起着重要的作用。该研究通过生物信息学方法在马铃薯基因组中鉴定了StCML基因家族成员,并对它们的表达模式及胁迫响应进行了分析,为深入解析马铃薯StCML基因家族成员在生长发育和胁迫响应中的作用机制奠定理论基础。结果显示:(1)在马铃薯基因组中共鉴定到80个StCML基因,它们均具有EF-hand结构;根据系统进化树拓扑结构可分为5个亚家族,在1~5亚家族中分别含有18、12、14、12、和24个基因,大部分基因具有较为保守的基因结构和基序。(2)RNA-Seq数据分析发现,StCML基因主要在马铃薯的花、叶柄、芽、雄蕊、匍匐茎和块茎中有特异表达,并且主要对盐、热、干旱和赤霉素处理有响应。(3)qRT-PCR分析发现,在低温胁迫下StCML13、StCML21和StCML53表达上调;在高温胁迫下StCML11、StCML21和StCML39表达上调;盐胁迫下StCML21和StCML60表达上调;青枯菌处理下StCML53表达上调,StCML8、StCML 13、StCML 21和StCML 60表达下调。研究表明,StCML基因对多种胁迫均有响应。  相似文献   

10.
Changes in the activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and the contents of malondialdehyde (MDA), chlorophyll, free proline and phytochelatins (PCs) in Solanum nigrum, the newly discovered Cd-hyperaccumulator were examined and compared with a non-hyperaccumulator Solanum melongena. It was indicated that leaf SOD and POD activity of S. nigrum was significantly higher than that of S. melongena. The Cd treatments significantly increased root SOD activity, leaf POD activity, and CAT activity and free proline content in the leaves and roots of S. nigrum. On the contrary, the Cd treatments decreased SOD activity, and did not change CAT activity in the leaves and roots of S. melongena. Moreover, there were no significant differences in free proline levels in the roots of S. melongena. These results validated that S. nigrum had a greater capacity than S. melongena to adapt to oxidative stress caused by Cd and free proline accumulation might be responsible for the tolerance of S. nigrum to Cd. Treated with 10 μg Cd g−1, growth of S. nigrum and its contents of chlorophyll and MDA were basically unaffected. In contrast, there were a decrease in the growth and chlorophyll content, and an increase in MDA in the roots of S. melongena. Although lipid peroxidation was promoted in both the hyperaccumulator and non-hyperaccumulator by high Cd stress, the greater increase took place in the tissues of S. melongena. The PCs level in roots of S. nigrum was significantly lower than that of S. melongena. On the contrary, the content of leaf PCs was much higher in S. nigrum than that in S. melongena. These results further suggested that antioxidative defense in the Cd-hyperaccumulator might play an important role in Cd tolerance, and PCs synthesis is not the primary reason for Cd tolerance although PCs in S. nigrum increased significantly by Cd.  相似文献   

11.
Capsaicin, from green pepper fruits is used in formulated foods and in pharmaceuticals. Cell cultures of Capsicum annuum L. were obtained from seedlings on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin. In vitro-grown cells and placental tissues from fruits were immobilized in calcium alginate. Immobilized cells and placental tissues produced capsaicin which leached out into the medium. Immobilized placental tissue exhibited greater potentiality for capsaicin synthesis than immobilized cells. Production reached a level of 1345 μg capsaicin g−1 of immobilized placenta on the 14th day of culture. Production of capsaicin, on replenished nutrient medium in immobilized placenta was 2400 μg on the 30th day. Ferulic acid fed to immobilized placenta at 2.5 mM level increased capsaicin production by 2-fold by the 5th day of the culture period. Of the elicitors used, curdlan was effective on capsaicin production in immobilized cells. Extracts of Aspergillius niger and Rhizopus oligosporus stimulated capsaicin production in immobilized placental tissues.  相似文献   

12.
Primary and secondary extracellular proteases produced by free or immobilized cells of the white-rot fungus Phanerochaete chrysosporium have been studied in relation to lignin peroxidase (LiP) decay. Proteases produced during primary metabolism exhibited a maximum activity on day 2; they could totally inactivate LiP activity and partially fragment LiP. Proteases produced during secondary metabolism did not inactivate or decay LiP.These proteases most likely are aspartic- and thiol-proteases.  相似文献   

13.
The effect of auxins, light and cellular production ofSolanum eleagnifolium Cav. calli were studied. 2,4-dichlorophenoxyacetic acid (4.5 M) was the plant growth regulator used for calli initiation and this produced the highest solasodine concentration. The solasodine concentration in darkness was significantly lower than that achieved under a photoperiod of 16 h. Differentiated tissue obtained by adequate hormonal balance (several ratios of 3-indolebutyric acid to 6-benzylaminopurine) produced higher yields of solasodine than non-differentiated tissue. 3-indolebutyric acid (2.5 M) and 6-benzylaminopurine (8.8 M) increased the productivity of solasodine by 100%.Abbreviations BAP 6-benzylaminopurine - KIN Kinetin - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA 3-indoleacetic acid - NAA 1-naphtaleneacetic acid - IBA 3-indolebutyric acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - DW dry weight - GI   相似文献   

14.
【目的】评估环链虫草Cordyceps cateniannulata对植物促生和植物抗氧化酶活性的影响。【方法】本研究利用浸种法将环链虫草接种于番茄植物体,在接种后的第30天和60天,通过番茄株高、根长、地上和地下部分的干鲜重指标评价其对番茄生长的影响;在接种后第10、20、30、60和90天,通过选择性培养基分析其在番茄不同组织中的生存情况,使用形态学及DNA序列比对的方法检验所分离菌株与原有菌株的一致性。在处理后的第30天,检测番茄叶片中的过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)及丙二醛(MDA)含量,观察环链虫草对番茄的抗氧化酶活性影响。【结果】环链虫草可定殖于番茄幼苗且对番茄生长有显著促进作用,菌株对植株的定殖偏好性分别为根部>茎部>叶部。酶活检测结果表明,处理组番茄叶片防御酶活性均呈显著升高的趋势,其中POD、CAT、SOD活性分别比对照增加了52.21%、75.31%和158.59%,MDA含量下降了35.15%。【结论】环链虫草可以通过浸种的方法感染并定殖番茄幼苗的根、茎、叶,促进番茄幼苗的生长并提高番茄抗氧化酶活性,具有较好的田间...  相似文献   

15.
The influences of concentration of acrylamide, pH, temperature, duration of storage of encapsulated cells and presence of different metals and chelators on the ability of immobilized cells of a Rhodococcus sp. to degrade acrylamide were evaluated. Immobilized cells (3 g) rapidly degraded 64 and 128 mM acrylamide in 3 and 5 h, espectively, whereas free cells took more than 24 h to degrade 64 mM acrylamide. An acrylamide concentration of 128 mM inhibited the growth of the free cells. Immobilized bacteria were slow to degrade acrylamide at 10 °C. Less than 60% of acrylamide was degraded in 4 h. However, 100% of the compound was degraded in less than 3 h at 28 °C and 45 °C. The optimum pH for the degradation of acrylamide by encapsulated cells was pH 7.0. Less than 10% of acrylamide was degraded at pH 6.0, while ca. 60% of acrylamide was degraded at pH 8.0 and 8.5. Copper and nickel inhibited the degradation, suggesting the presence of sulfhydryl (-SH) groups in the active sites of the acrylamide degrading amidase. Iron enhanced the rates of degradation and chelators (EDTA and 1,10 phenanthroline) reduced the rates of degradation suggesting the involvement of iron in its active site(s) of the acrylamide-degrading-amidase. Immobilized cells could be stored up to 10 days without any detectable loss of acrylamide-degrading activity.  相似文献   

16.
A coimmobilized mixed culture of algae, Chlorella pyrenoidosa, and bacteria, Gluconobacter oxydans, has been studied. The conversion of glycerol to dihydroxyacetone(1,3-dihydroxy-2-propanone), catalysed by the bacteria, was used to indicate the oxygen supply in the immobilized preparation. The oxygen produced by the algae in the coimmobilized preparation was used by the bacteria more effectively than when the cells were immobilized separately and mixed within the reactor. A preparation consisting of only bacteria and no algae was much less effective. The coimmobilized preparation was used in the continuous production of dihydroxyacetone for six days without any significant loss of activity.  相似文献   

17.
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina ( < 44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity.  相似文献   

18.
由大丽轮枝菌(Verticillium dahliae Kleb.)引起的茄子黄萎病是一种严重的土传病害,但在茄子栽培品种中缺少高抗种质,野生茄‘托鲁巴姆’高抗黄萎病。为探讨野生茄‘托鲁巴姆’抗黄萎病的分子机制,该试验以‘托鲁巴姆’为试材,利用抑制性差减杂交技术,分别以黄萎病菌侵染与未侵染的根系为检测方(tester)和驱动方(driver),构建了1个黄萎病菌诱导下的根器官正向差减cDNA文库。结果表明:(1)随机挑取170个阳性克隆,经测序,共获得109个非冗余EST,其中61个EST与其他植物的抗逆相关基因同源,如几丁质酶、细胞色素P450、过氧化物酶、蛋白酶抑制子等。(2)借助NCBI中的EST序列,经过电子拼接结合RT-PCR验证,克隆了1个通用胁迫蛋白基因———StUSP1。(3)表达分析结果显示,‘托鲁巴姆’受黄萎病菌侵染后,StUSP1在根中上调表达。  相似文献   

19.
Recently, the riparian buffer zone using Phragmites australis (Cav.) Trin. has frequently been installed in the ecotone, and young shoots of P. australis have been produced worldwide using seeds and/or rhizomes. However, the expenditures of labor, time, and money related to this technique have been enormous. In this paper, therefore, a new method which enables the reduction of the above-mentioned expenditure is developed and proposed. Using this method, we were able to install an area where P. australis flourished without the production of young shoots, by simply placing segments of P. australis culms by the water, and were able to reduce the above-mentioned usual expenditure. On the other hand, hydrophytes such as Scirpus tabernaemontani Gmel., Zizania latifolia Turcz. and Typha latifolia L. have frequently been planted with P. australis as a riparian buffer zone material. In this study, therefore, the care required in the mix planting of the above-mentioned four hydrophytes was also examined on the basis of the allelopathic potential of the interspecies. As a result, the allelopathic inhibition of root elongation was observed between the interspecies. Therefore a sufficient planting interval is required in order to ensure the elongation of the roots of the above-mentioned hydrophytes in the case of mix planting.  相似文献   

20.
Shoot cultures of Solanum laciniatum were able to remediate Sr2+ contained in the media (25–200 mg l–1) and to accumulate Sr2+ up to 0.13% in the biomass. The growth of these shoot cultures remained good. Sr2+ at 50 and 100 mg l–1 caused the vascular system of the stem to develop outwards with an increase of solasodine content 1.6 and 1.4 fold, respectively. A decrease of Ca2+ content of 16% was observed at Sr2+ 100 and 200 mg l–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号