首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The timing of salmon migration from the estuary of the Aberdeenshire Dee into the river in relation to tidal phase and time of day was studied by combined acoustic and radio-tracking of individual fish and by analysing records of untagged fish from a resistivity fish counter 0.8 km upstream from the tidal limit. Up-estuary movements that led to river entry were predominantly nocturnal and tended to occur during the ebb tide. Penetration into the non-tidal reaches of the river also tended to occur at night, but the timing of salmon movements was no longer significantly associated with tidal phase. The tracking data suggested that the reduction in the strength of the association between salmon migration and tidal phase resulted from variability in rates of progress from the estuary to the river. This variability may have been random, or related to changes in migratory behaviour during entry to fresh water. A simulation of upstream progress by groups of salmon illustrated the decay of the relationship between salmon movements and tidal phase and the advance of the average tidal phase of observed salmon movements with increasing distance of the observation point from where movements were initiated. The magnitude of these effects depended on the average rate of upstream progress and variability in the rate of progress, being greatest when upstream progress was slow and variable. These results highlight a limitation of point observations of migration with regard to identifying environmental stimuli for migration and quantifying their effects.  相似文献   

2.
Multi-sea-winter Atlantic salmon (75–115 cm fork length L F, 2–4-winter fish) were radio-tagged in the Tanafjord (700 N), Norway, in 1992–1993, and 130 fish entered the large subarctic River Tana (Teno). They entered the fresh water at any time of the tidal cycle but more so during the high and ebbing tides. No diel rhythm was detected in river entry under polar day conditions. There were no differences in the change of flow between days when salmon moved and when they did not, but during active migration increasing discharge was associated with increased swimming activity of salmon, especially later in the summer. Increasing air temperature was also associated with enhanced migration activity. Low river flow was associated with increasing delay in salmon passing the first riffle area of the river, 35 km from the sea.  相似文献   

3.
Due to hydropower development, the upstream migration of wild anadromous salmon and brown trout is impaired in many European rivers, causing negative effects on the long-term survival of natural salmonid populations. This study identified problems for Atlantic salmon during upstream migration in a regulated river in northern Sweden, Umeälven (mean flow: 430 m3 s?1). Tagging from 1995 to 2005 involved radio tags (n = 503), PIT tags (n = 1574) and Carlin tags (n = 573) to study the spawning migration of salmon from the coast past the regulated section of the river to a fish ladder at the dam/spillway 32 km upriver. The results demonstrate that migration success from the coast to the fish ladder varied between 0% and 47% among years, indicating an average loss of 70% of potential spawners. Discharge from the turbines attracted the salmon away from the bypass route. Echo-sounding in the turbine outlet showed that salmon were normally found at 1–4 m depths. They responded with upstream and/or downstream movements depending on flow changes; increased spill in the bypass channel attracted salmon to the bypass. Once in the bypass channel, salmon could be delayed and had difficulties passing the first rapid at high spills. Additional hindrances to upstream migration were found at rapids and the area of the fish ladder, located further upstream in the regulated river section. The average migration duration was 44 days from the estuary to the top of the fish ladder, with large variation among individuals within years. Modelling the salmon population dynamics showed a potential population increase of 500% in 10 years if the overall migration success could be improved from the current 30% to levels near 75%. Consequently improved migration facilities at the regulated river section should be implemented to achieve a long-term sustainability of these threatened anadromous salmonids.  相似文献   

4.
We review factors affecting the within-river spawning migration of Atlantic salmon. With populations declining across the entire distribution range, it is important that spawners survive in the last phase of the spawning migration. Knowledge on the factors affecting migration is essential for the protection of populations, and to increase the success of reintroduction programmes. A number of studies have documented that the upstream migration may be delayed for many weeks at man-made obstacles such as power station outlets, residual flow stretches, dams, weirs and fishways. The fish may also be delayed at natural migration barriers. Often, the magnitude of delay is not predictable; fish may be considerably delayed at barriers that appear to humans to be easily passable, or they may quickly pass barriers that appear difficult. Stressful events like catch-and-release angling may affect upstream migration. Impacts of human activities may also cause altered migration patterns, affect the within-river distribution of the spawning population, and severe barriers may result in displacement of the spawning population to other rivers. Factors documented to affect within-river migration include previous experience, water discharge, water temperature, water velocity, required jump heights, fish size, fish acclimatisation, light, water quality/pollution, time of the season, and catch and handling stress. How each of these factors affects the upstream migration is to a varying extent understood; however, the effects may differ among different river sections and sites. There are likely a number of additional important factors, and the relationship between different factors is complex. The understanding of general mechanisms stimulating fish within-river migration are still lacking, and it cannot be reliably predicted under which conditions a fish will pass a given migration barrier or which conditions are needed to stimulate migration at different sites. The strong focus on the effects of water discharge in past work may have hampered consideration of other factors. Exploration of the influence of these other factors in future studies could improve our understanding of what controls the upstream migration.  相似文献   

5.
The movements of adult Atlantic salmon were recorded as they approached, entered and ascended the pool-and-orifice fish ladder at Pitlochry Dam, Scotland. Thirty-nine returning salmon were captured in the River Tummel by rod-and-line angling, radio-tagged and released near where they were caught. The subsequent movements of each fish were then monitored. An electronic fish counter collected additional data on movements of untagged fish past a fixed point in the ladder. Of the 39 fish that were radio-tagged, 29 individuals were recorded approaching and ascended the ladder. The remaining fish either did not approach the dam (three fish), approached the dam after detailed tracking had ended (two fish), were recaptured by anglers (three fish), or the radio tags failed (two fish). Salmon released earlier in the year delayed longer before first approaching the dam. Delays between first approaching the dam and ascent of the ladder were greater for fish that approached the dam earlier. The majority of salmon visited the ladder entrance more than once (maximum 10 visits) before ascending. Having entered, all but four salmon ascended the fish ladder successfully on their first attempt. The four individuals that failed to do so succeeded on their second attempt. The rate at which salmon ascended the ladder was related directly to temperature. The shortest ascent time of a radio-tagged salmon was 5·25 h. Movements of eight of 11 tagged fish through the ladder ceased with the onset of darkness but continued on the following morning. No radio-tagged fish entered the ladder at temperatures below 9) C. Similarly, few untagged fish were recorded ascending the ladder by the electronic fish counter at water temperatures below 8·5) C. Records from the fish counter indicated that 92% of upstream movements were made during daylight.  相似文献   

6.
By combining biotelemetry with animal-borne thermal loggers, we re-created the thermal histories of 21 summer-run Chinook salmon (Oncorhynchus tshawytscha) migrating in the Puntledge River, a hydropower impacted river system on Vancouver Island, British Columbia, Canada. Daily maximum water temperatures in the Puntledge River during the summer-run adult Chinook salmon migration and residency period frequently exceeded 21 °C, a value that has been observed to elicit behavioral thermoregulation in other Chinook salmon populations. We therefore compared river temperatures to body temperatures of 16 fish that migrated through the river to understand if cool-water refuge was available and being used by migrants. In addition, we used thermal histories from fish and thermal loggers distributed in the river to model the effect of thermal habitat on energy density using a bioenergetics model. In general, we found no evidence that cool-water refuge existed in the river, suggesting that there is no opportunity for fish to behaviorally thermoregulate during upriver migration through the regulated portion of the river. Of the thermal histories used in the bioenergetics model, fish that reached an upstream lake were able to access cooler, deeper waters, which would have reduced energy consumption compared to fish that only spent time in the warmer river. Consequently, the Puntledge River water temperatures are likely approaching and in some cases exceeding the thermal limits of the summer-run Chinook salmon during the spawning migration. Further warming may cause more declines in the stock.  相似文献   

7.
In this study, effects of stock origin, fish size, water flow and temperature on time of river ascent of adult Atlantic salmon Salmo salar were tested. Brood stocks were collected in eight Norwegian rivers situated between 59 and 69° N. The fish were reared to smolts, individually tagged and released in the River Imsa, south-west Norway (59° N). Adults from all stocks approached the Norwegian coast concurrently, but Atlantic salmon ≥70 cm in natural tip length entered coastal water slightly earlier during summer than smaller fish. Atlantic salmon <70 cm, however, ascended the river significantly earlier and at lower water flow and higher water temperature than larger fish. Although largest in size, the fish from the northern populations (62–69° N) ascended the River Imsa almost 1 month earlier than those from the south (59–60° N). They seemed less restricted by the environmental factors than the fish originating from the more southern rivers. There was no apparent trend among years in time of river ascent. Maximum ascent per day occurred at water discharges between 12·5 and 15 m3 s−1 and at water temperatures between 10 and 12·5° C. There was a significant positive correlation between water flow and river ascent during the first part of the upstream run from July to September with best correlation for September, when multiple regression analysis indicated that water temperature had an additional positive effect. Stock origin, fish size and water discharge were important variables influencing the upstream migration of Atlantic salmon in small rivers.  相似文献   

8.
River discharge and water temperature are frequently cited as controlling the upstream migration of adult salmonids to their spawning areas. The results of earlier studies on the effect of these environmental factors were examined. The statistical methods employed in some of these studies failed to consider the serial correlation often found in migration time series. To assess the effects of discharge and temperature on the migratory activity of the landlocked Atlantic salmon (ouananiche, Salmo salar ), 12 years of data on spawning migrations in the Mistassini R., Quebec, Canada, were analysed and the results obtained by ordinary least squares regression and time series regression were compared. In six of the 12 years, upstream migratory movement was related negatively to changes in river flow, suggesting that fish favour falling water phases for ascent. Water temperature appeared to have little effect on migratory movement. The mean body size of migrating fish decreased significantly throughout the summer; early migrants were on average 11.4% larger (mean fork length 522mm) than late migrants (469 mm). Larger, 3-lake-year salmon migrated 7.2 days earlier than 2-lake-year salmon. Because the residuals from ordinary regression exhibited strong autocorrelation, time series regression was more appropriate than ordinary regression for the analysis of migration time Series.  相似文献   

9.
Fisheries‐induced evolution can change the trajectory of wild fish populations by selectively targeting certain phenotypes. For important fish species like Atlantic salmon, this could have large implications for their conservation and management. Most salmon rivers are managed by specifying an angling season of predetermined length based on population demography, which is typically established from catch statistics. Given the circularity of using catch statistics to estimate demographic parameters, it may be difficult to quantify the selective nature of angling and its evolutionary impact. In the River Etne in Norway, a recently installed trap permits daily sampling of fish entering the river, some of which are subsequently captured by anglers upstream. Here, we used 31 microsatellites to establish an individual DNA profile for salmon entering the trap, and for many of those subsequently captured by anglers. These data permitted us to investigate time of rod capture relative to river entry, potential body size‐selective harvest, and environmental variables associated with river entry. Larger, older fish entered the river earlier than smaller, younger fish of both sexes, and larger, older females were more abundant than males and vice versa. There was good agreement between the sizes of fish harvested by angling, and the size distribution of the population sampled on the trap. These results demonstrate that at least in this river, and with the current timing of the season, the angling catch reflects the population's demographics and there is no evidence of size‐selective harvest. We also demonstrated that the probability of being caught by angling declines quickly after river entry. Collectively, these data indicate that that the timing of the fishing season, in relation to the upstream migration patterns of the different demographics of the population, likely represents the most significant directional evolutionary force imposed by angling.  相似文献   

10.
The recapture rate of Atlantic salmon (Salmo salar L.) after river ascent was examined by the trapping and tagging of ascending spawners in the lower reaches of the Simojoki River, which flows into the northern Baltic Sea. In 1997 and 1998, altogether 825 Carlin‐tagged salmon were released to continue their upstream migration. Of these, 800 could be sexed and categorized as reared (91%) or wild (9%) salmon. In 1997, most of the ascending salmon were multi‐sea‐winter (MSW) fish, whereas in 1998 almost all were one‐sea‐winter (1SW) male grilse due to the late trapping season. About 10% of all tagged fish were recaptured, two‐thirds of which were caught in the river before their descent to the sea. There was no difference in the recapture rate between salmon of wild (8.5%) or reared (9.5%) origin, or between females (11.6%) and males (9.3%). Generalized linear models for data from 1997 showed that the recapture rate increased with length and age of females, but that the opposite was true for males. River fishing did not seem to remove proportionally more early ascending salmon than fish that ascended later.  相似文献   

11.
Management of multiple exploited stocks of anadromous salmonids in large catchments requires understanding of movement and catchment use by the migrating fish and of their harvesting. The spawning migration of sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) was studied in the River Tweed, UK, using acoustic telemetry to complement exploitation rate data and to quantify catchment penetration. Salmon (n = 79) and sea trout (n = 65) were tagged in the tidal-influenced Tweed in summer–autumn. No tagged salmon left the river before spawning, but 3% (2010) and 8% (2011) of pre-spawning sea trout dropped out. Combined tag regurgitation/fish mortality in salmon was 12.5%, while trout mortality was 6% (2010) and 0% (2011). The estimated spawning positions of salmon and sea trout differed; tagged salmon were mostly in the main channel while trout occurred mostly in the upper Tweed and tributaries. Early fish migrated upstream slower than later fish, but sea trout moved through the lower-middle river more quickly than salmon, partly supporting the hypothesis that the lower exploitation rate in autumn of trout (1 vs 3.3% for salmon) there is generated by differences in migration behaviour.  相似文献   

12.
The river Ingdalselva, which drains to the Trondheims fjord, has no local salmon population due to an impassable waterfall 500 m upstream from the outlet. In the period 1994–97, a total of 31 mature Atlantic salmon (19 females and 12 males) from the rivers Orkla (1994–96) and Vigda (1997) were radio-tagged and released in the river Ingdalselva before spawning. The main goal of the project was to find out whether the fish would stay and spawn in the river, and if the observations during the spawning period could be used to indicate where spawning had taken place. Some fish left the river shortly after release, but 77% of the fish stayed in the river during the spawning period in October. Most of the females (74%) spawned in the river, including multi-sea winter salmon of approximately 10 kg. Some fish remained at the site of the release, while others migrated downstream to hiding places where they stayed until spawning. Long distance upstream migrations were not observed. The observations of the fish during the spawning period were used to identify spawning areas. Electrofishing for salmon fry in the spawning areas the following year in all cases produced fry, and in two of the years salmon fry were also found in areas where no spawning activity had been registered. Radio-tracking was an efficient method for determining whether transplanted salmon would remain in a `new'n river during the spawning season and for locating spawning areas, particularly when the fish were tracked daily.  相似文献   

13.
14.
Fifty‐three one‐sea‐winter Atlantic salmon Salmo salar (45–63 cm L T) were radio‐tagged in the Tana fjord, Barents Sea, in 1995. Thirty‐seven fish (70%) entered the freshwater zone of the River Tana in an average of 3 days after release in the fjord. The migration speeds in the lowest river section below the first riffle area were significantly higher than in the subsequent river section below the second riffle area. Similarly, the observed time spent in the first riffle area was significantly lower than in the next riffle area. The majority of Atlantic salmon entered the river during the hours of high tide and the subsequent ebb tide. In addition, most river entries were recorded around midnight. No effects of river flow on the river entry or migration speed were detected, but the migration speed of Atlantic salmon in both river sections examined was greater at lower temperatures. Twenty‐eight fish (72%) were recaptured in the river, 71% of them with weirs and gillnets, and 29% by rod and line. Over half of the Atlantic salmon (54%) were recaptured within 3 weeks following river entry, and within the first 100 km of the river (56%). The results are discussed in relation to earlier studies on multi‐sea‐winter Atlantic salmon in the River Tana.  相似文献   

15.
Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species.  相似文献   

16.
Six years' data from the River Coquet together with published information for other British rivers show that upstream migrant salmon and sea trout tend to be intercepted at counting fences and be caught on rod and line when river flows are somewhat higher than average and not when they are at their extreme values, though there is no particular river flow favoured all the year round. In years of highest river discharge the number of fish entering the River Coquet and the number of fish caught on rod and line are highest but the efficiency of angling is lowest.  相似文献   

17.
Adult Atlantic salmon (55–116 cm total length) with PIT-tags ( n = 318) and both PIT-tags and gastric radio-tags ( n = 127) in a regulated river showed similar upstream migration success, yet radio-tagged fish migrated faster than fish with only PIT-tags. Regurgitation rate of radio-tags was 9%.  相似文献   

18.
Populations of juvenile salmon emigrating from natal rivers to the ocean must often traverse different migratory pathways that may influence survival. In regulated rivers, migration routes may consist of a network of channels such as in the Sacramento-San Joaquin River Delta, or of different passage structures at hydroelectric dams (e.g., turbines or spillways). To increase overall survival, management actions in such systems often focus on altering the migration routing of fish to divert them away from low-survival routes and towards high-survival routes. Here, we use a 3-year data set of route-specific survival and movement of juvenile Chinook salmon in the Sacramento-San Joaquin Delta to quantify the sensitivity of survival to changes in migration routing at two major river junctions in the Sacramento River. Our analysis revealed that changes in overall survival in response to migration routing at one river junction depended not only differences in survival among alternative routes, but also on migration routing at the other river junction. Diverting fish away from a low-survival route at the downstream river junction increased population survival by less than expected, given the difference in survival among routes, because part of the population used an alternative migration route at the upstream river junction. We also show that management actions that influence only migration routing will likely increase survival by less than actions that alter both migration routing and route-specific survival. Our analysis provides an analytical framework to help fisheries managers quantify the suite of management actions likely to maximize increases in population level survival.  相似文献   

19.
Although the Ebro River is one of the largest Mediterranean rivers, the presence of anadromous fish species was near to complete extirpation since the second half of the 20th century. However, many mature twaite shads (Alosa fallax) were captured at the lower reaches of this river (Xerta's weir site, 63 river km) in spring 2005, suggesting a natural recovery of this population. In this study, the first biological data on twaite shad from the Ebro River are presented, and their significance for the species conservation and recovery are discussed. The historical reasons for the decline of this species are reviewed, and data supports the proposal for urgent construction of a proper fish passage for anadromous species at the Xerta's weir. This action would allow fish access to a further 60 km of river upstream of the weir, representing a 200% increase in the amount of freshwater habitat and potential spawning areas. Improved access together with restrictive fishery regulations will assist with renewed interest in the fishery and conservation of the species.  相似文献   

20.
Synopsis Sexually immature and sexually mature precocious male Baltic salmon,Salmo salar, parr from Umeälven (Ume river) were tested for rheotactic behaviour and adaptation to seawater before, during, and after the time period for smolt migration. Size of fish at the beginning of the experiment in January was on average 13.5 cm. Rheotactic behaviour was tested in annular stream tanks with photocells to measure upstream and downstream movements. Samples of fish were given a Seawater challenge test at monthly intervals in order to determine their ability to adapt to 20%. saltwater. During spring, both immature and sexually precocious parr became silvery and showed progressive development of downstream-directed movements. In early June the fish exhibited good hypoosmoregulatory ability in 20%. saltwater and swimming was predominantly downstream. During late June and early July there was a marked reversal in swimming behaviour, accompanied by a dramatic change in saltwater adaptation. The fish moved mainly upstream and showed decreasing ability to meet the seawater challenge test. This was accompanied by a loss of silvery coloration. The annual cycle of swimming behaviour and seawater adaptation is discussed in relation to the appearance of a smolt-window, i.e., a critical interval for smolt migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号