首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
叶绿体遗传转化:植物导入外源基因的新途径   总被引:2,自引:0,他引:2  
叶绿体转化系统,独立于传统的核转化,为植物导入外源基因提供了新途径。它有如下优点:超量表达目的基因;以定点整合方式导入外源基因从而消除了位置效应及基因沉默;具原核表达方式,能以多顺反子的形式表达多个基因;母系遗传方式可防止基因扩散;基因产物区域化并能提供适于某些产物发挥功能的小环境等。随着这项技术在越来越多的领域发挥作用,其优越性逐渐得到认同。本文着重对此技术的特点、发展及应用作一综述。  相似文献   

3.
叶绿体遗传转化:植物导入外源基因的新途径   总被引:7,自引:0,他引:7  
叶绿体转化系统,独立于传统的核转化,为植物导入外源基因提供了新途径,它有如下优点:超量表达目的的基因;以定点整合方式导入外源基因从而消除了位置效应及基因沉默;具有原核表达方式,能以多 反子的形式表达多个基因;母系遗传方式可防止基因扩散;基因产物区域化并能提供适于某些产物发挥功能的小环境等。随着这项技术在越来越多的领域发挥作用,其优势性逐渐得到认同。本文着重对此技术的特点,发展及应用作一综述。  相似文献   

4.
5.
The phenomenon of loosing exogenic DNA from the mammalian somatic cell genome is under investigation. It is found that foreign DNA incorporated into cell genome as a result of transfection by electrophoretion may be lost with the frequency from 1/100 up to 1/100 000 per cell division during cultivation. This effect is not dependent of the nature of cell line and vector DNA. It is actual for different cell lines: A23, human fibroblasts AG 11395, murine embryonic line F9, and for different plasmid vectors: p16, p.39, pATR4 and pcDNA3.1-Higr (WRN). Integration of pDNA into genome and the following loosing of this DNA is registered by selection markers G418 and hygromycin B resistance and gancyclovir sensibility. The presence of foreign DNA in the genome was controlled by PCR. It is found that true foreign DNA deletion from the genome takes place rather than gene expression changes. For closely linked plasmid genes deletion of both genes at once as well as loosing any one gene separately is shown. Thus, the phenomenon of selective deletion of exogenic DNA from genome has been demonstrated for different mammalian cells.  相似文献   

6.
The idea that sperm cells could be used as an effective tool for introducing exogenous DNA into an oocyte at fertilization is generally regarded with scepticism. However, in recent years, several investigators have been working on different aspects of this intriguing research topic. In the present review, their results are summarised and discussed. Sections have been dedicated to the way DNA molecules bind to spermatozoa of different species, to the events regulating such binding, to the fate of the DNA within sperm cells, and to the attempts made to produce transgenic animals with this method. The data available on the interaction between DNA and spermatozoa begin to explain how this event takes place and how it is regulated. However, the stable integration of exogenous genes into the genome of adult animals mediated by sperm cells is a very rare event, although several reports describe forms of partial success. Available evidence suggests that changes to the DNA molecules, oc curring mostly within the oocyte, represents the limiting step in the production of transgenic animals using spermatozoa as vectors of exogenous genes. At present there are not enough data to understand what happens to sperm-associated DNA upon its entrance into the oocyte at fertilization. Therefore, it has not yet been resolved whether sperm-mediated gene transfer is a possible way to manipulate the genome or if evolution has imposed some unsurpassable barriers to its use  相似文献   

7.
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.  相似文献   

8.
9.
Production of functional transgenic mice by DNA pronuclear microinjection   总被引:3,自引:0,他引:3  
Successful experiments involving the production of transgenic mice by pronuclear microinjection are currently limited by low efficiency of random transgene integration into the mouse genome. Furthermore, not all transgenic mice express integrated transgenes, or in other words are effective as functional transgenic mice expressing the desired product of the transgene, thus allowing accomplishment of the ultimate experimental goal - in vivo analysis of the function of the gene or gene network. The purpose of this review is to look at the current state of transgenic technology, utilizing a pronuclear microinjection method as the most accepted way of gene transfer into the mouse genome.  相似文献   

10.
The retroposon sequences, their mechanisms of transposition and the occurrence of insertional mutation in the mammalian genome are reviewed. Insertional mutations fall into two broad categories: those due to the disruption of a gene following the physical integration of a foreign DNA sequence result in loss of gene product and would be expected to be associated with a recessive mutation. A second class of insertional mutation is well documented in which upon integration the promoter/enhancer activities inherent in the retroposon genome exert their influence on neighboring genes. This promoter/enhancer activity of integrated retroposons may have effects over relatively long distances and thus limit the possibilities of establishing an association between retroposon integration and mutation. It is emphasized that a systematic search for insertional mutations in the mammalian genome involves an extensive two-dimensional array of possible retroposon sequences and mutant alleles. Present results represent only a small portion of the total array. Future studies promise to be fruitful in efforts to isolate genes through insertional tagging, to characterize the mechanisms of retroposon transposition, as well as to study the stability of the mammalian genome.  相似文献   

11.
Persistence, integration into host genome, germ line transmission and expression of foreign genes microinjected into cytoplasm of fertilized rainbow trout eggs has been examined. Foreign DNA persisted as large random concatenates in approximately 50% of 6 to 12 month-old trout and exhibited a mosaic pattern between tissues. In some cases, free concatenates were observed indicating that extrachromosomal replication occurred in trout. Approximately 50% of the males had the foreign sequences in sperm DNA and all the examined animals transmitted these sequences to their progeny. The percentage of transgenic offsprings ranged from 10 to 30% and putative junction fragments were identified in Southern blot analysis in some of them. These results strongly support the hypothesis that the injected genes became integrated into the genome host, most likely after the first round of chromosomal replication. We also examined the expression of the microinjected plasmids which contained viral or mammalian promoters linked to human or rat growth hormone gene. In no case could exogenous growth hormone be detected.  相似文献   

12.
传统转基因技术,如显微注射、转座子、慢病毒转染等将目的基因插入基因组内的整合方式是随机的,这些随机整合对后期转基因动物品系组建和育种带来诸多不利,因此有研究人员提出了定点整合转基因技术。目前该技术的定点整合效率非常低,主要取决于两个方面:一是靶位点产生DNA双链断裂(double-strand break, DSB)的效率;二是断裂后的靶位点与携带同源臂及外源基因的供体质粒发生同源重组的效率,其中同源重组修复(homologous recombination repair, HDR)是基因组定点整合最为依赖的修复机制。靶位点产生DSB后,机体的DNA修复既可能发生HDR,也可能发生非同源末端连接(nonhomologous end joining, NHEJ),并且两者之间存在竞争关系,因此激活HDR或抑制NEHJ都可提高定点整合转基因的效率。本文结合影响定点整合的因素,对提高定点整合效率最新探索方面进行了综述。  相似文献   

13.
The majority of the mammalian genome is thought to be relatively stable throughout and between generations. There are no developmentally programmed gene amplifications as seen in lower eukaryotes and prokaryotes, however a number of unscheduled gene amplifications have been documented. Apart from expansion of trinucleotide repeats and minisatellite DNA, which involve small DNA elements, other cases of gene or DNA amplifications in mammalian systems have been reported in tumor samples or permanent cell lines. The mechanisms underlying these amplifications remain unknown. Here, we report a spontaneous transgene amplification through the male germline which resulted in silencing of transgene expression. During routine screening one mouse, phenotypically negative for transgene expression, was found to have a transgene copy number much greater than that of the transgenic parent. Analysis of the transgene expansion revealed that the amplification in the new high copy transgenic line resulted in a copy number approximately 40-60 times the primary transgenic line copy number of 5-8 copies per haploid genome. Genetic breeding analysis suggested that this amplification was the result of insertion at only one integration site, that it was stable for at least two generations and that the site of insertion was different from the site at which the original 5-8 copy array had integrated. FISH analysis revealed that the new high copy array was on chromosome 7 F3/4 whereas the original low copy transgene array had been localised to chromosome 3E3. DNA methylation analysis revealed that the high copy transgene array was heavily methylated. The amplification of transgenes, although a rare event, may give insight into amplification of endogenous genes which can be associated with human disease.  相似文献   

14.
转基因植物中T-DNA整合的分子特征及表达   总被引:1,自引:0,他引:1  
植物中不同转基因方法转化外源基因的T-DNA整合特征既具有共性,又具有特性,使得转基因的遗传在各独立转化体间呈现多样性,另外多种遗传因子和限制因素使受体植物中外源基因的表达存在下降,甚至出现基因沉默等复杂现象。本文主要对农杆菌介导及裸露DNA直接转化转基因植物中T-DNA的分子特征和转基因表达的影响因子进行了介绍和概述。转化体中转基因的遗传稳定性和表达主要取决于转基因在植物基因组中的整合位置、拷贝数及组成结构。因而,通过对具有表达水平各异的转化体进行深入的遗传分析和分子生物学研究以及转化体之间进行的比较研究,将对转基因技术自身的完善、定点整合以及更有效的利用转基因技术都具有十分重要的意义。  相似文献   

15.
The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.  相似文献   

16.
17.
Tang W  Luo XY  Sanmuels V 《Cell research》2001,11(3):181-186
INTRODUCTIONThe genome structure of plants can be alteredby genetic transformation. During the process ofgene transfer, Agrobacterium tumefaCJens integratepart of their genome into the genome of susceptiblespecies. Recently, genetic transfOrmation techniqueshave been used to modify significantly the organi-zation of the genome. Introducing transgenes intop1ants can both modify the number of copies of agiven sequence and affect gene expression. Becausethe expression of a transgene cannot…  相似文献   

18.
J W Gordon  F H Ruddle 《Gene》1985,33(2):121-136
In recent years, new gene transfer systems have been developed which allow molecularly cloned genetic material to be introduced into whole organisms. These systems include the microinjection of DNA into mammalian embryos, transfection of DNA into mouse bone marrow cells, and the infection of early embryos with retroviruses. Exogenous DNA appears to integrate randomly into the host genome. The production of transgenic mice by injection of DNA into mouse embryos has rapidly gained importance as an experimental tool for the study of gene regulation during development. Through this technique, recombinant molecules of any type can be introduced into one-celled embryos, and thus can be used to study development from its earliest stages. DNA sequences have been shown to integrate and transmit through the germ line to subsequent generations as mendelian traits. Transgenic mice carrying various gene constructs have been successfully exploited for the elucidation of factors which determine tissue specificity of gene expression as well as the level of gene control. Phenotypic changes related to expression of foreign genes have also been observed. This experimental approach thus promises to rapidly solve many of the heretofore most challenging problems in developmental genetics. Insertion of foreign genes has also made possible the creation of insertional mutants which manifest themselves most frequently as recessives. Such mutations can be readily studied at the molecular level by using the transferred material as a probe for recovery of the affected host sequence from genomic libraries. Many of these same problems have been addressed by introducing retroviral DNA into mouse embryos. Here, the sequences used for transfer have been limited to retroviral genes, but nonetheless these experiments have been profitably exploited for studies both of gene regulation and mutagenesis. Gene transfer systems are being developed allowing the experimenter to transfer DNA into bone marrow cells of mice, after which the recipient cells can be reintroduced into lethally irradiated histocompatible animals. This system has the advantage that selection can be applied during the gene transfer process such that the expression of the foreign material is assured. In addition, these experiments have created a model system for production of animals carrying a subpopulation of cells which is highly resistant to a toxic agent. This system has the potential for therapeutic application to man.  相似文献   

19.
A huge database resulted from whole genome sequencings has provided a possibility of new information that is likely to extent the scope and thus changes the way of approach for the functional assigning of putative open reading frames annotated by whole genome sequence analyses. These are mainly realized by ease, one-step identification of putative genes using genomics or proteomics tools. A major challenge remained in biotechnology may translate these informations into better ways to screen or select a gene as a representative sequence. Further attempts to mine the related whole genes or partial DNA fragments from whole genome treasure, and then the incorporation of these sequences into a representative template, will result in the use of genetic information that can be translated into functional proteins or allowed the generation of new lineages as a valuable pool. Such screens enable rapid biochemical analysis and easy isolation of the target activity, thereby accelerating the screening of novel enzymes from the expanded library with related sequences. Information-based PCR amplification of whole genes and reconstitution of functional DNA fragments will provide a platform for expanding the functional spaces of potential enzymes, especially when used mixed- and metagenome as gene resources.  相似文献   

20.
Putative mechanism of natural transformation as deduced from genome data.   总被引:1,自引:0,他引:1  
K Yura  H Toh  M Go 《DNA research》1999,6(2):75-82
Genetic transformation is widely utilized in molecular biology as a tool for gene cloning in Escherichia coli and for gene mapping in Bacillus subtilis. Several strains of eubacteria can naturally take up exogenous DNA and integrate the DNA into their own genomes. Molecular details of natural transformation, however, remained to be elucidated. The complete genome of a cyanobacterium, Synechocystis sp. PCC6803, has been sequenced. This bacterium has been used to examine functions of a particular gene. The genome is considered to carry information on natural transformable characteristics of Synechocystis. The first step in genetic transformation is the uptake of exogenous DNA. Proteins with non-specific DNA binding features are required, because specificity in the exogenous DNA has not been demonstrated. Such proteins have modules interacting with the phosphate backbone of DNA, including helix-turn-helix modules. Using a consensus pattern of the phosphate-binding helix-turn-helix module, we searched through the genome data of Synechocystis for genes or open reading frame (ORF) products with the pattern in primary structures. We found that an ORF, slr0197, has the pattern in duplicate at the C-terminal region. We also found that the ORF product has a hydrophobic segment at the N-terminal region, which is followed by two internal repeats of the endonuclease domain. Based on these observations, we propose a model for the initial stage of genetic transformation. This is apparently the first report on molecular mechanisms of natural transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号