首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is a human pathogen and natural inhabitant of aquatic environments. Serogroups O1/O139 have been associated with epidemic cholera, while non-O1/non-O139 serogroups usually cause human disease other than classical cholera. V. cholerae non-O1/non-O139 from the Neusiedler See, a large Central European lake, have caused ear and wound infections, including one case of fatal septicaemia. Recent investigations demonstrated rapid planktonic growth of V. cholerae non-O1/non-O139 and correlation with zooplankton biomass. The aim of this study was to elucidate the interaction of autochthonous V. cholerae with two dominant crustacean zooplankton species in the lake and investigate the influence of the natural bacterial community on this interaction. An existing data set was evaluated for statistical relationships between zooplankton species and V. cholerae and co-culture experiments were performed in the laboratory. A new fluorescence in situ hybridisation protocol was applied for quantification of V. cholerae non-O1/non-O139 cells, which significantly reduced analysis time. The experiments clearly demonstrated a significant relationship of autochthonous V. cholerae non-O1/non-O139 with cladocerans by promoting growth of V. cholerae non-O1/non-O139 in the water and on the surfaces of the cladocerans. In contrast, copepods had a negative effect on the growth of V. cholerae non-O1/non-O139 via competing bacteria from their surfaces. Thus, beside other known factors, biofilm formation by V. cholerae on crustacean zooplankton appears to be zooplankton taxon specific and may be controlled by the natural bacterial community.  相似文献   

2.
Several species of the genus Vibrio, including Vibrio cholerae, are bioluminescent or contain bioluminescent strains. Previous studies have reported that only 10% of V. cholerae strains are luminescent. Analysis of 224 isolates of non-O1/non-O139 V. cholerae collected from Chesapeake Bay, MD, revealed that 52% (116/224) were luminescent when an improved assay method was employed and 58% (130/224) of isolates harbored the luxA gene. In contrast, 334 non-O1/non-O139 V. cholerae strains isolated from two rural provinces in Bangladesh yielded only 21 (6.3%) luminescent and 35 (10.5%) luxA+ isolates. An additional 270 clinical and environmental isolates of V. cholerae serogroups O1 and O139 were tested, and none were luminescent or harbored luxA. These results indicate that bioluminescence may be a trait specific for non-O1/non-O139 V. cholerae strains that frequently occur in certain environments. Luminescence expression patterns of V. cholerae were also investigated, and isolates could be grouped based on expression level. Several strains with defective expression of the lux operon, including natural K variants, were identified.  相似文献   

3.
Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.  相似文献   

4.

Background  

Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear.  相似文献   

5.
A clinical isolate of nontoxigenicVibrio cholerae O1 that caused intestinal fluid accumulation (FA) in adult mice produced proteolytic, hemolytic, and cytotoxic activities in in vitro assays. The linkage of these secreted factors to the FA activity was studied by transposon (TnphoA) mutagenesis. Ten of the 12 TnphoA insertion mutants that were defective for proteolytic activity produced FA, hemolytic and cytotoxic activities; the remaining two mutants lost these latter three activities. These results indicate that FA activity is independent of proteolytic activity but closely associated with cytotoxic and hemolytic activities. Our results with the adult mouse model and a nontoxigenicV. cholerae O1 are in general agreement with previous studies that demonstrated linkage of cytotoxin and hemolysin of toxigenicV. cholerae O1 and non-O1 with FA activity in rabbit ileal loops.  相似文献   

6.

Background

Human infections with non-O1, non-O139 V. cholerae have been described from Laos. Elsewhere, non cholera-toxin producing, non-O1, non-O139 V. cholerae have been described from blood cultures and ascitic fluid, although they are exceedingly rare isolates.

Case presentation

We describe a farmer who died with Vibrio cholerae O21 bacteremia and peritonitis in Vientiane, Laos, after eating partially cooked apple snails (Pomacea canaliculata) and mussels (Ligumia species). The cultured V. cholerae were non-motile. PCR detected ompW and toxR gene regions but not the ctxA, ompU, omp K and TCP gene regions. Although the organisms lacked flagellae on scanning electron microscopy, they possessed the Vibrio flagellin flaA gene.

Conclusion

Severe bacteremic non-O1, non-O139 V. cholerae is reported from Laos. The organisms were unusual in being non-motile. They possessed the Vibrio flagellin flaA gene. Further research to determine the reasons for the non-motility and virulence is required.  相似文献   

7.
Over the course of seven pandemics, Vibrio cholerae serotypes have varied. In 1992 the appearance of a new serotype, O139 Bengal, began the eighth cholera pandemic. Several new O139 antigens have been identified, yet a common V. cholerae antigen has not been described. In this study, a monoclonal antibody specific against an 18.7-kDa outer membrane antigen reacted in dotblot analysis with 292 epidemiologically diverse V. cholerae isolates including O1, non-O1, and O139 serotypes. Serum collected from volunteers experimentally challenged with V. cholerae O139, and rabbit antisera to V. cholerae O1, were reactive with the 18.7-kDa antigen by Western immunoblot. This is the first report that the 18.7-kDa antigen is present in V. cholerae O139. Received: 11 August 1997 / Accepted: 22 September 1997  相似文献   

8.
Vibrio cholerae O139 (synonym Bengal), a novel serovar of V. cholerae, is the causative agent of large outbreaks of cholera-like illness currently sweeping India and Bangladesh. Eight randomly selected V. cholerae O139 isolates were studied for their biological properties, which were compared with those of V. cholerae O1 and other V. cholerae non-O1. The V. cholerae O139 isolates were characterized by the production of large amount of cholera toxin, hemagglutination, weak hemolytic properties, resistance to polymyxin B, lysogeny with, and production of, kappa type phage (4/8 isolates only), and resistance to both classical and El Tor-specific phages. Thus, V. cholerae O139 isolates had an overall similarity with V. cholerae O1 El Tor.  相似文献   

9.
Vibrio parahaemolyticus, V. cholerae, and V. vulnificus were isolated from 10.3%, 1.0%, and 0.1% of 885 blue mussel samples, respectively. Four of the samples contained trh+ V. parahaemolyticus, while no tdh-positive isolates were detected. The V. cholerae isolates were non-O:1/non-O:139 serotypes and were ctxA negative.  相似文献   

10.
Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments. Recently, it was found that chironomid (nonbiting midges) egg masses serve as a reservoir for the cholera bacterium and that flying chironomid adults are possible windborne carriers of V. cholerae non-O1 non-O139. Chironomids are the most widely distributed insect in freshwater. Females deposit egg masses at the water's edge, and each egg mass contains eggs embedded in a gelatinous matrix. Hemagglutinin/protease, an extracellular enzyme of V. cholerae, was found to degrade chironomid egg masses and to prevent them from hatching. In a yearly survey, chironomid populations and the V. cholerae in their egg masses followed phenological succession and interaction of host–pathogen population dynamics. In this report, it is shown via FISH technique that most of the V. cholerae inhabiting the egg mass are in the viable but nonculturable (VBNC) state. The diversity of culturable bacteria from chironomid egg masses collected from two freshwater habitats was determined. In addition to V. cholerae, representatives of the following genera were isolated: Acinetobacter, Aeromonas, Klebsiella, Shewanella, Pseudomonas, Paracoccus, Exiguobacterium, and unidentified bacteria. Three important human pathogens, Aeromonas veronii, A. caviae, and A. hydrophila, were isolated from chironomid egg masses, indicating that chironomid egg masses may be a natural reservoir for pathogenic Aeromonas species in addition to V. cholerae. All isolates of V. cholerae were capable of degrading chironomid egg masses. This may help explain their host–pathogen relationship with chironomids. In contrast, almost none of the other bacteria that were isolated from the egg masses possessed this ability. Studying the interaction between chironomid egg masses, the bacteria inhabiting them, and V. cholerae could contribute to our understanding of the nature of the V. cholerae–egg mass interactions.  相似文献   

11.
Arbačiauskas  Kestutis 《Hydrobiologia》2001,460(1-3):157-164
Vibrio cholerae is the causative agent of the severe dehydrating diarrheal disease cholera. This bacterium has been detected in many estuaries around the world and the United States. In this study we examine the abundance and distribution of V. cholerae in recreational beach waters and tributaries of Southern California. Water samples were taken from 11 beach locations adjacent to freshwater runoff sources between February 8th and March 1st, 1999. Water samples were also taken from rivers, creeks and coastal wetlands along the Southern California coast between May 19th and June 28th, 1999. In addition to the detection of V. cholerae, environmental parameters including temperature, salinity, coliphage counts, viable heterotrophic plate counts and total bacterial direct counts were also determined to understand the relationships between the presence of V. cholerae and environmental conditions. A direct colony hybridization method using an oligonucleotide probe specific for the 16S–23S intergenic spacer region of V. cholerae, detected V. cholerae in 3 of the 11 beach samples with the highest concentration (60.9 per liter) at the mouth of Malibu Lagoon. V. cholerae and coliphage were not correlated for beach samples, indicating that the presence of V. cholerae is independent of sewage pollution. V. cholerae were detected in all samples taken from rivers, creeks and wetlands of coastal Southern California where salinities were between 1 to 34 parts per thousand (ppt), but was not found at a freshwater sampling site in upper San Juan Creek. The highest density of V. cholerae was found in San Diego Creek with a concentration of 4.25×105 CFU/L. The geographical distribution of V. cholerae was inversely correlated with salinity. High concentrations of V. cholerae were more frequently detected in waters with lower (but above 0) salinity. The results of this study provide insight into the ecology of this aquatic species and are potentially important to the understanding of the epidemiology of cholera on a global scale.  相似文献   

12.
The aim of this study was to investigate the presence of TCP gene clusters among clinical and environmental Vibrio cholerae isolates and to explore the genetic relatedness of isolates using ribotyping technique. A total of 50 V. cholerae strains (30 clinical and 20 environmental) were included in this study. Three clinical isolates were negative for TCP cluster genes while the cluster was absent in all of the environmental strains. Ribotyping of rRNA genes with BglI produced 18 different ribotype patterns, three of which belonged to clinical O1 serotype isolates. The remaining 15 ribotypes belonged to clinical non-O1, non-O139 serogroups (two patterns) and environmental non-O1, non-O139 serogroups (13 patterns). Clinical V. cholerae O1 strains from 2004 through 2006 and several environmental non-O1, non-O139 V. cholerae strains from 2006 showed 67.3 % similarity and fell within one single gene cluster. Ribotyping analysis made it possible to further comprehend the close originality of clinical isolates as very little changes have been occurred within rRNA genes of different genotypes of V. cholerae strains through years. In conclusion, ribotyping analysis of environmental V. cholerae isolates showed a substantial genomic diversity supporting the fact that genetic changes within bacterial genome occurs during years in the environment, while only little changes may arise within the genome of clinical isolates.  相似文献   

13.
Water, sediment, and shellfish from three Oregon estuaries were cultured for pathogenic Vibrio species. Non-O1 serovars of V. cholerae were the most common pathogenic Vibrio species recovered. Non-O1 V. cholerae were isolated from all three estuaries sampled, covering an area of about 170 miles along the Oregon coast. Non-O1 V. cholerae were isolated from water and sediment, but not shellfish, at temperatures ranging from 11 to 19°C and salinities of 2.3 to 26‰. Sixteen isolates representing 12 different non-O1 serovars were identified, while four non-O1 V. cholerae isolates failed to react with any of the 54 antisera tested. These results indicate that non-O1 V. cholerae serovars can be found over a large geographic area and under a variety of environmental conditions. These organisms are apparently an autochthonous component of these estuarine microbial communities.  相似文献   

14.
A total of 21 isolates of Vibrio cholerae non-O1 strains were isolated from three wastewater treatment plants in Agadir, Morocco. The isolates were analyzed by biochemical analysis, antibiogram, pulsed-field gel electrophoresis and the MALDI-TOF patterns of their protein masses were compared. Over 67% of isolates were susceptible to antimicrobial agents tested and 14% proved resistant to both trimethoprim-sulfamethoxazole and nalidixic acid. Typing by pulsed-field gel electrophoresis with NotI digestion revealed that the V. cholerae non-O1 strains from Agadir (Morocco) have a lower level of genetic homogeneity, the restriction patterns of whole-chromosomal DNA grouped the V. cholerae O1 and V. alginolyticus strains into a separate cluster from V. metschnikovii and V. cholerae non-O1 isolates. Furthermore, to gain additional analytical accuracy and reliability in the analysis we used dendrogram based on MALDI-TOF spectral patterns generated by the BioTyper 1.1™ software. All m/z signatures of all strains tested indicate that the mass spectral data contained sufficient information to distinguish between strains of V. cholerae.  相似文献   

15.
Vibrio cholerae O1 and V. cholerae non-O1 strains isolated from environmental samples collected in São Paulo, Brazil, during cholera epidemics and pre-epidemic periods were examined for the presence of toxin genes. V. cholerae O1 strains isolated from clinical samples in Peru and Mexico, and V. cholerae O139 strains from India were also examined for the presence of ctx (cholera toxin gene) and zot (zonula occludens toxin gene) by polymerase chain reaction (PCR). A modified DNA-extraction method applied in this study yielded satisfactory recovery of genomic DNA from vibrios. Results showed that strains of V. cholerae O1 isolated during the preepidemic period were ctx -/zot - whereas strains isolated during the epidemic were ctx +/zot +. All V. cholerae non-O1 strains tested in the study were ctx -/zot -, whereas all V. cholerae O139 strains were ctx +/zot +. Rapid detection of the virulence genes (ctx and zot) can be achieved by PCR and this can serve as an important tool in the epidemiology and surveillance of V. cholerae.  相似文献   

16.
Using a mouse monoclonal antibody (MAb) 2F raised against Vibrio cholerae non-O1 heat-stable enterotoxin (NAG-ST) which also recognizes a shared epitope of Yersinia enterocolitica heat-stable enterotoxin (Y-ST), a competitive enzyme-linked immunosorbent assay (ELISA) was developed for independent detection of NAG-ST and Y-ST. There was good concordance between the Y-ST ELISA and the suckling mouse assay (SMA) for detection of Y-ST from test strains of Y. enterocolitica, and the Y-ST ELISA can effectively replace the SMA for routine detection of Y-ST. On the contrary, evaluation of the NAG-ST ELISA and the SMA using 139 strains of V. cholerae non-O1 showed discordant results and this was attributed to the presence of the suckling mice active factor(s) such as El Tor hemolysin and to the production of low amounts of NAG-ST. Concentration of culture supernatants of V. cholerae non-O1 followed by heating at 100 C was essential to obtain reproducible results by both the NAG-ST ELISA and the SMA. The ELISA developed in this study can be used for the identification of biologically active strains. While recently genetic methods such as polymerase chain reaction became available and were very reliable and simple techniques, the ELISA in this study has an advantage in detecting biologically toxic gene products of the strains. The genetic methods cannot differentiate silent STa genes which we often encounter in the case of Y. enterocolitica.  相似文献   

17.
One hundred fifty-seven isolates possessing the biochemical traits associated withVibrio cholerae were submitted to an extensive phenotypic characterization. A numerical analysis of the results suggested that isolates presently assigned to the biotypescholerae, eltor, andalbensis ofV. cholerae do not possess consistent phenotypic differences supporting their separation into distinct biotypes. The results further indicated that clinical and environmental isolates of non-O1 serotypes ofV. cholerae are phenotypically indistinguishable from strains ofV. cholerae serotype O1. This study also confirmed the persistent presence ofV. cholerae in the Australian environment.  相似文献   

18.
Non-O1/non-O139 nontoxigenic Vibrio cholerae associated with cholera-like diarrhea has been reported in Kolkata, India. However, the property involved in the pathogenicity of these strains has remained unclear. The character of 25 non-O1/non-O139 nontoxigenic V. cholerae isolated during 8 years from 2007 to 2014 in Kolkata was examined. Determination of the serogroup showed that the serogroups O6, O10, O35, O36, O39, and O70 were represented by two strains in each serogroup, and the remaining isolates belonged to different serogroups. To clarify the character of antibiotic resistance of these isolates, an antibiotic resistance test and the gene analysis were performed. According to antimicrobial drug susceptibility testing, 13 strains were classified as drug resistant. Among them, 10 strains were quinolone resistant and 6 of the 13 strains were resistant to more than three antibiotics. To define the genetic background of the antibiotic character of these strains, whole-genome sequences of these strains were determined. From the analysis of these sequences, it becomes clear that all quinolone resistance isolates have mutations in quinolone resistance-determining regions. Further research on the genome sequence showed that four strains possess Class 1 integrons in their genomes, and that three of the four integrons are found to be located in their genomic islands. These genomic islands are novel types. This indicates that various integrons containing drug resistance genes are spreading among V. cholerae non-O1/non-O139 strains through the action of newly generated genomic islands.  相似文献   

19.
DNA-DNA homology among twenty-nine isolates having the phenotypic properties ofVibrio cholerae was studied using the S1 endonuclease method. Ten strains ofV. cholerae O1 isolated from patients and from the environment in Australia showed greater than 88% homology with the neotype strain ofV. cholerae NCTC 8021. Strains of the non-O1 serotype isolated from a variety of clinical and environmental sources also showed a high level of relatedness, including four luminescent strains and a reference strain of the biotypealbensis. A group of sucrose-negative strains showed a low level of homology (40 to 43%) withV. cholerae, but 75% and 82% homology within the group.  相似文献   

20.
Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号