首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residualizing labels for protein, such as dilactitol-125I-tyramine (125I-DLT) and cellobiitol-125I-tyramine, have been used to identify the tissue and cellular sites of catabolism of long-lived plasma proteins, such as albumin, immunoglobulins, and lipoproteins. The radioactive degradation products formed from labeled proteins are relatively large, hydrophilic, resistant to lysosomal hydrolases, and accumulate in lysosomes in the cells involved in degradation of the carrier protein. However, the gradual loss of the catabolites from cells (t1/2 approximately 2 days) has limited the usefulness of residualizing labels in studies on longer lived proteins. We describe here a higher molecular weight (Mr approximately 5000), more efficient residualizing glycoconjugate label, inulin-125I-tyramine (125I-InTn). Attachment of 125I-InTn had no effect on the plasma half-life or tissue sites of catabolism of asialofetuin, fetuin, or rat serum albumin in the rat. The half-life for hepatic retention of degradation products from 125I-InTn-labeled asialofetuin was 5 days, compared to 2.3 days for 125I-DLT-labeled asialofetuin. The whole body half-lives for radioactivity from 125I-InTn-, 125I-DLT-, and 125I-labeled rat serum albumin were 7.5, 4.3, and 2.2 days, respectively. The tissue distribution of degradation products from 125I-InTn-labeled proteins agreed with results of previous studies using 125I-DLT, except that a greater fraction of total degradation products was recovered in tissues. Kinetic analyses indicated that the average half-life for retention of 125I-InTn degradation products in tissues is approximately 5 days and suggested that in vivo there are both slow and rapid routes for release of degradation products from cells. Overall, these experiments indicate that 125I-InTn should provide greater sensitivity and more accurate quantitative information on the sites of catabolism of long-lived circulating proteins in vivo.  相似文献   

2.
Residualizing labels are tracers which remain in lysosomes after uptake and catabolism of the carrier protein and have been especially useful for studies on the sites of plasma protein degradation. Thus far these labels have contained radioactive reporters such as 3H or 125I. In the present paper we describe a fluorescent residualizing label, NN-dilactitol-N'-fluoresceinylethylenediamine (DLF). Modification of asialofetuin (ASF) or rat serum albumin (RSA) with DLF affected neither their normal kinetics of clearance from the rat circulation nor their normal tissue sites of uptake and degradation. After injection of DLF-ASF, fluorescent degradation products were recovered nearly quantitatively in liver and retained with a half-life of about 2 days. Fluorescent degradation products from DLF-RSA were recovered in skin and muscle, and were localized in fibroblasts by fluorescence microscopy. These results confirm previous studies with radioactive residualizing labels in which fibroblasts in peripheral tissues were identified as primary sites of albumin degradation. Fluorescent catabolites also accumulated in fibroblasts incubated with DLF-RSA in vitro, and residualized with a half-life of about 2 days. Overall, the data establish that DLF functions efficiently as a fluorescent residualizing label both in vivo and in vitro. The advantages of fluorescent, compared with radioactive, residualizing labels should make them valuable tools for studies on protein uptake and catabolism in biological systems.  相似文献   

3.
beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125I-dilactitol tyramine (125I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125I retained in this organ 24 h after injection of 125I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight. The quantitative differences observed in the tissue distributions of injected 125I-DLT-beta-VLDL and 125I-DLT-low density lipoprotein suggested that a significant proportion of beta-VLDL is removed by tissues before conversion to low density lipoprotein.  相似文献   

4.
Despite considerable efforts to unravel the role of cellular prion protein (PrPC) in neuronal functions, the mechanisms by which PrPC takes part in the homeostasis of a defined neuronal phenotype remain poorly characterized. By taking advantage of a neuroectodermal cell line (1C11) endowed with the capacity to differentiate into serotonergic (1C115-HT) or noradrenergic (1C11NE) neurons, we assessed the contribution of PrPC to bioaminergic cell functions. We established that in 1C11-derived neuronal cells antibody-mediated PrPC ligation triggered tumor necrosis factor (TNF)-α release, through recruitement of the metalloproteinase TNF-α converting enzyme (TACE). TNF-α shed in response to PrPC acts as a second message signal, eliciting serotonin (5-HT) or norepinephrine (NE) degradation in 1C115-HT or 1C11NE cells, respectively. Our data thus introduced TNF-α as a PrPC-dependent modulator of neuronal metabolism. Of note, we previously reported on a control of neurotransmitter catabolism by 5-HT2B or α1D autoreceptors in 1C11 bioaminergic neurons, via the same TACE/TNF-α pathway (Ann. N Y Acad. Sci. 1091, 123). Here, we show that combined stimulation of PrPC and these two bioaminergic receptors add their effects on neurotransmitter degradation. Overall, these observations unveil a novel contribution of PrPC to the control of neuronal functions and may have implications regarding dysfunction of the bioaminergic systems in prion diseases.  相似文献   

5.
Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure–function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.  相似文献   

6.
Macroporous polyacrylamide gels (MPAAG) with iminodiacetic acid (IDA) functionality were prepared by (i) chemical modification of polyacrylamide gel, (ii) co-polymerization of acrylamide with allyl glycidyl ether (AGE) and N,N'metylene-bis(acrylamide) (MBAAm) followed by coupling IDA ligand or (iii) by copolymerization of acrylamide and MBAAm with functional monomer carrying IDA-functionality (1-(N,N-bis(carboxymethyl)amino-3-allylglycerol). Screening for optimized conditions for the production of the MPAAG with required porous properties was performed in a 96-well chromatographic format that allowed parallel production and analysis of the MPAAG prepared from reaction mixtures with different compositions. Scanning electron microscopy of the fabricated MPAAG revealed two different types of the porous structures: monomodal macroporous structure with large interconnected pores separated by dense non-porous pore walls in case of plain gels or gels produced via copolymerization with AGE. The other type of the MPAAG (gel produced via co-polymerization with functional monomer carrying IDA-functionality) had bimodal pore structure with large interconnected pores separated by the pore walls pierced through with micropores. The effect of different modifications of MPAAG monoliths and of porous structure of the MPAAG (monomodal and bimodal porous structure) on protein binding has been evaluated.  相似文献   

7.
Nucleic-acid binding proteins constitute nearly one-fourth of all functionally annotated human genes. Genome-wide analysis of protein-nucleic acid contacts has not yet been performed for most of these proteins, restricting attempts to establish a comprehensive understanding of protein function. UV cross-linking is a method typically used to determine the position of direct interactions between proteins and nucleic acids. We have developed the cross-linking and immunoprecipitation assay, which exploits the covalent protein-nucleic acid cross-linking to stringently purify a specific protein-RNA complex using immunoprecipitation followed by SDS-PAGE separation. In this way, the vast majority of non-specific contaminating RNA, which can bind to co-immunoprecipitated proteins or beads, can be removed. Here, we present an improved protocol that performs RNA linker ligation before the SDS-PAGE step, and describe its application to the specific purification and amplification of RNA ligands of Nova in neurons.  相似文献   

8.
Solvent accessibility can be used to evaluate protein structural models, identify binding sites, and characterize protein conformational changes. The differential modification of amino acids at specific sites enables the accessible surface residues to be identified by mass spectrometry. Tryptophan residues within proteins can be differentially labeled with halocompounds by a photochemical reaction. In this study, tryptophan residues of carbonic anhydrase are reacted with chloroform, 2,2,2-trichloroethanol (TCE), 2,2,2-trichloroacetate (TCA), or 3-bromo-1-propanol (BP) under UV irradiation at 280 nm. The light-driven reactions with chloroform, TCE, TCA, and BP attach a formyl, hydroxyethanone, carboxylic acid, and propanol group, respectively, onto the indole ring of tryptophan. Trypsin and chymotrypsin digests of the modified carbonic anhydrase are used to map accessible tryptophan residues using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Tryptophan reactivity is determined by identifying peptides with tryptophan residues modified with the appropriate label. The reactivity is calculated from the frequency that the modification is identified and a semiquantitative measure of the amount of products formed. Both of these measures of tryptophan reactivity correlate significantly with the accessible surface area of tryptophan residues in carbonic anhydrase determined from the X-ray crystal structure. Therefore the photochemical reaction of halocompounds with tryptophan residues in carbonic anhydrase indicates the degree of solvent accessibility of these residues.  相似文献   

9.
Human erythrocytes, untreated and glutaraldehyde-treated, were spin labeled with three kinds of fatty acid labels, and their electron spin resonance (ESR) spectra were studied in detail at various temperatures. 1. The better spectral resolution could be obtained by packing the erythrocytes in a hematocrit capillary tube, because of the preferential parallel orientation of the cylindrical axes of erythrocyte-disc to the centrifugal axis. 2. It was demonstrated by the incorporation and the release of the labels that the membrane possessed two kinds of the fatty acid "sites": the tightly and weakly binding "sites" at the approximate molar ratio of 1:1. The rough estimates of the binding constants were obtained, which reproducibly varied with the blood donors over a period of a year. 3. The temperature dependency of the ESR spectra revealed the presence of two distinct phases, perhaps the solid and fluid phases. With lowering of the temperature, the fluid phase became more solid but the solid phase unchanged. The pretreatment of the erythrocytes with glutaraldehyde increased the amount of the frozen phase, corresponding to the decrease of the membrane flexibility.  相似文献   

10.
We recently developed a general method for determining tissue sites of degradation of plasma proteins in vivo that made use of covalently attached radioactive sucrose. On degradation of the protein, the sucrose remained trapped in the cells as a cumulative marker of protein degradation. The method described here depends on the same principles, but uses an adduct of cellobiose and tyramine that is radioiodinated to high specific radioactivity and then covalently attached to protein. Use of the radioiodinated ligand increases the sensitivity of the method at least 100-fold and allows simplified tissue analysis. Proteins derivatized with the radioiodinated ligand were recognized as underivatized proteins both in vitro and in vivo. On degradation of derivatized low-density lipoprotein, the rate of leakage from cultured fibroblasts was only 5% during 24 h. Similarly, on injection of labelled proteins into rats and rabbits, urinary excretion of the label was in all cases less than 10% of total labelled catabolic products recovered 24 h after injection. Examination of the tissue contents of label at two times after injection of labelled asialofetuin or apolipoprotein A1 in rats, and asialotransferrin in rabbits showed that the label did not detectably redistribute between tissues after initial uptake and catabolism; a significant leakage from liver was quantitatively accounted for by label appearing in gut contents and faeces. A simple double-label method was devised to provide a correction for intact protein in trapped plasma, the extravascular spaces, and within cells. By using this method it becomes unnecessary to fractionate tissue samples.  相似文献   

11.
A method is described for radiolabelling proteins with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose (DD125IBS). When proteins so labelled were degraded within lysosomes, the radioactive fragments were largely retained within the organelle. High specific radioactivities were obtained without changing the properties of the protein. The validity of the method was demonstrated in vivo in rats using the short-lived protein lactate dehydrogenase, isoenzyme M4, and the long-lived protein bovine serum albumin. Derivatization with DD125IBS did not alter the clearance of either protein. Uptake of DD125IBS-labelled lactate dehydrogenase, isoenzyme M4, by liver and spleen of rats was determined. Radioactivity in these tissues increased up to about 2 h after injection (at this time the protein has been almost completely cleared from the blood) and subsequently declined with a half-life of approx. 20 h. After differential fractionation of liver, radioactivity was largely found in the mitochondrial and lysosomal fraction. The results of these studies establish that DD125IBS covalently coupled to plasma proteins should be a useful radioactive tracer for identifying the tissue and cellular sites of catabolism of relatively long-lived circulating proteins.  相似文献   

12.
13.
14.
The uptake of formaldehyde-treated 125I-labelled human serum albumin in rat hepatocytes and nonparenchymal liver cells was measured in vivo and in vitro. Isolated liver cells were prepared by treating the perfused liver with collagenase. Purified hepatocytes and nonparenchymal cells were obtained by differential centrifugation. Human serum albumin was found to be taken up exclusively or almost exclusively by nonparenchymal cells in vitro and in vivo (after intravenous injection). The maximal rate of human serum albumin-uptake in vitro was comparable to that in vivo. Nonparenchymal cells degraded human serum albumin in vitro as indicated by release of trichloroacetic acid-soluble radioactivity. Degradation started about 20-30 min after addition of human serum albumin to cells and rate of degradation was proportional to rate of uptake. Human serum albumin-degradation could be studied without interference of concurrent uptake by separating cells that had been preincubated with human serum albumin from the medium and then reincubating them with human serum albumin-free medium. The lag phase before human serum albumin-degradation starts and the inhibitory effect of chloroquine on degradation indicate that human serum albumin is degraded in lysosomes. The data obtained show that enzymatically prepared nonparenchymal liver cells retain their endocytic activity in vitro. Denatured human serum albumin should be useful both as a marker for rat liver macrophages and for the study of intracellular proteolysis in these cells.  相似文献   

15.
1. The uptake of 125I-labelled high density lipoproteins (HDL) in various organs of the rat was determined after an intravenous injection. The uptake of 125I-labelled polyvinylpyrrolidone in the same organs was determined in order to assess uptake by fluid endocytosis. The uptake/organ was highest for the liver. The adrenals showed the highest uptake/unit weight of the organs studied. The liver, the kidneys and the spleen showed comparable values for uptake/g of tissue. The uptake of 125I-labelled HDL exceeded by far that of 125I-labelled polyvinylpyrrolidone in the liver, the kidneys, the spleen and the adrenals, indicating that the uptake of 125I-labelled HDL was mediated by adsorptive endocytosis. 2. The in vivo uptake of 125I-labelled HDL was determined in purified hepatocytes and non-parenchymal cells prepared by collagenase perfusion of livers from animals after intravenous injections of 125I-labelled HDL. When expressed per cell, the hepatocytes and the non-parenchymal liver cells took up about the same amount of 125I-labelled HDL. 3. The in vitro uptake and degradation of 125I-labelled HDL in isolated rat hepatocytes was studied. The uptake at increasing concentrations of 125I-labelled HDL was saturable indicating uptake mediated through binding sites. 125I-labelled HDL were easily degraded by contaminating proteases from the perfusate. 4. Subcellular fractionation by isopycnic centrifugation indicated that the accumulation of 125I-labelled HDL did not take place in the lysosomes, but rather on the plasma membrane and possibly in the endosomes (phagosomes). 5. 125I-labelled HDL were internalized into the cells and degraded in the lysosomes. Leupetin and chloroquine, inhibitors of the lysosomal function effectively inhibited the formation of 125I-labelled acid-soluble radioactivity by the cells. Chloroquine, but not the protease inhibitor leupeptin, reduced the hydrolysis of the cholesteryl ester moiety of HDL.  相似文献   

16.
17.
A wide variety of agents are shown to mimic insulin action and inhibit rates of intracellular protein degradation in H35 hepatoma cells. For oxidizing agents such as NaNO2, H2O2 and oxidized glutathione, inhibition of protein breakdown is reversed by adding catalase. Phenylhydrazine behaves like an oxidant and mimics insulin action in a manner potentiated by superoxide dismutase and reversed by catalase. Similarly the effect of insulin itself is increased by superoxide dismutase and reduced by catalase. Sulfhydryl reagents also mimic insulin action: inhibition of protein breakdown is seen following addition of 2-mercaptoethanol or a brief pre-treatment with N-ethylmaleimide or iodoacetate. Mild pre-treatment with trypsin also inhibits subsequent rates of protein breakdown. A model is proposed suggesting that these insulinomimetic actions involve a common mechanism which links the generation of active oxygen species through the redox potential of the cell to the activation of a proteinase.  相似文献   

18.
19.
The intracellular transport and degradation of in vivo endocytosed chylomicron remnants labelled with 125I in the protein moiety was studied in rat liver cells by means of subcellular fractionation in Nycodenz and sucrose density gradients. Initially, the radioactivity was located in low-density endosomes and was sequentially transferred to light and dense lysosomes. Data from gel filtration of the light and dense lysosomal fractions showed radioactive material with a molecular weight of about 1000-2000, representing short peptide fragments or amino acids which remain attached to iodinated tyramine cellobiose. In addition, undegraded apoproteins accumulated in both types of lysosome. Our data suggest that endocytosed chylomicron remnant apoproteins are first located in low-density endosomes and are sequentially transferred to light and dense lysosomes. Furthermore, the degradation process starts in the light lysosomes.  相似文献   

20.
We investigated the localization of several markers for lysosomes and aggresomes in the chromatoid bodies (CBs) by immunoelectron microscopy. We found so-called aggresomal markers such as Hsp70 and ubiquitin in the core of the CBs and vimentin and proteasome subunit around the CBs. Ubiquitin-conjugating enzyme (E2) was also found in the CBs. In tubulovesicular structures surrounding the CBs, lysosomal markers were detected but an endoplasmic reticulum retention signal (KDEL) was not. Moreover, proteins located in each subcellular compartment, including the cytosol, mitochondria, and nucleus, were detected in the CBs. Signals for cytochrome oxidase I (COXI) coded on mitochondrial DNA were also found in the CBs. Quantitative analysis of labeling density showed that all proteins examined were concentrated in the CBs to some extent. These results show that the CBs have some aggresomal features, suggesting that they are not a synthetic site as proposed previously but a degradation site where unnecessary DNA, RNA, and proteins are digested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号