首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) J. Biol. Chem. 275, 32147-32156). To confirm the proposed catalytic mechanism, we have made the D130N, K185N, D189N, and N190S mutated enzymes and measured the catalytic activities. The catalytic rates (k(cat)) of D130N, K185N, D189N, and N190S mutated enzymes are reduced to 0.7%, 0.5%, 0.1%, and 0.5%, respectively, in comparison with the wild type enzyme, indicating that Asp-130, Lys-185, Asp-189, and Asn-190 are involved in the catalytic reaction. K(m) values of the mutated enzymes are increased significantly, except for the N190S mutation, suggesting that Asp-130, Lys-185, and Asp-189 participate in the substrate binding. To interpret the kinetic data, the oxidation states of the bound NAD molecules of the wild type and mutated enzymes were measured during the catalytic reaction by monitoring the absorbance at 340 nm. The crystal structures of the WT and D244E.Ado*, containing four subunits in the crystallographic asymmetric unit, were re-refined to have the same subunit structures. A detailed catalytic mechanism of AdoHcyase has been revealed based on the oxidation states of the bound NAD and the re-refined crystal structures of WT and D244E.Ado*. Lys-185 and Asp-130 abstract hydrogen atoms from 3'-OH and 4'-CH, respectively. Asp-189 removes a proton from Lys-185 and produces the neutral N zeta (-NH(2)), and Asn-190 facilitates formation of the neutral Lys-185. His-54 and His-300 hold and polarize a water molecule, which nucleophilically attacks the C5'- of 3'-keto-4',5'-dehydroadenosine to produce 3'-keto-Ado.  相似文献   

2.
Crystal structure of S-adenosylhomocysteine hydrolase from rat liver.   总被引:5,自引:0,他引:5  
The crystal structure of rat liver S-adenosyl-L-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) which catalyzes the reversible hydrolysis of S-adenosylhomocysteine (AdoHcy) has been determined at 2.8 A resolution. AdoHcyase from rat liver is a tetrameric enzyme with 431 amino acid residues in each identical subunit. The subunit is composed of the catalytic domain, the NAD+-binding domain, and the small C-terminal domain. Both catalytic and NAD+-binding domains are folded into an ellipsoid with a typical alpha/beta twisted open sheet structure. The C-terminal section is far from the main body of the subunit and extends into the opposite subunit. An NAD+ molecule binds to the consensus NAD+-binding cleft of the NAD+-binding domain. The peptide folding pattern of the catalytic domain is quite similar to the patterns observed in many methyltransferases. Although the crystal structure does not contain AdoHcy or its analogue, there is a well-formed AdoHcy-binding crevice in the catalytic domain. Without introducing any major structural changes, an AdoHcy molecule can be placed in the catalytic domain. In the structure described here, the catalytic and NAD+-binding domains are quite far apart from each other. Thus, the enzyme appears to have an "open" conformation in the absence of substrate. It is likely that binding of AdoHcy induces a large conformational change so as to place the ribose moiety of AdoHcy in close proximity to the nicotinamide moiety of NAD+. A catalytic mechanism of AdoHcyase has been proposed on the basis of this crystal structure. Glu155 acts as a proton acceptor from the O3'-H when the proton of C3'-H is abstracted by NAD+. His54 or Asp130 acts as a general acid-base catalyst, while Cys194 modulates the oxidation state of the bound NAD+. The polypeptide folding pattern of the catalytic domain suggests that AdoHcy molecules can travel freely to and from AdoHcyase and methyltransferases to properly regulate methyltransferase activities. We believe that the crystal structure described here can provide insight into the molecular architecture of this important regulatory enzyme.  相似文献   

3.
A site-directed mutagenesis, D244E, of S-adenosylhomocysteine hydrolase (AdoHcyase) changes drastically the nature of the protein, especially the NAD(+) binding affinity. The mutant enzyme contained NADH rather than NAD(+) (Gomi, T., Takata, Y., Date, T., Fujioka, M., Aksamit, R. R., Backlund, P. S., and Cantoni, G. L. (1990) J. Biol. Chem. 265, 16102-16107). In contrast to the site-directed mutagenesis study, the crystal structures of human and rat AdoHcyase recently determined have shown that the carboxyl group of Asp-244 points in a direction opposite to the bound NAD molecule and does not participate in any hydrogen bonds with the NAD molecule. To explain the discrepancy between the mutagenesis study and the x-ray studies, we have determined the crystal structure of the recombinant rat-liver D244E mutant enzyme to 2.8-A resolution. The D244E mutation changes the enzyme structure from the open to the closed conformation by means of a approximately 17 degrees rotation of the individual catalytic domains around the molecular hinge sections. The D244E mutation shifts the catalytic reaction from a reversible to an irreversible fashion. The large affinity difference between NAD(+) and NADH is mainly due to the enzyme conformation, but not to the binding-site geometry; an NAD(+) in the open conformation is readily released from the enzyme, whereas an NADH in the closed conformation is trapped and cannot leave the enzyme. A catalytic mechanism of AdoHcyase has been proposed on the basis of the crystal structures of the wild-type and D244E enzymes.  相似文献   

4.
Structure and function of S-adenosylhomocysteine hydrolase   总被引:6,自引:0,他引:6  
In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.  相似文献   

5.
Recently, we have described the first human case of AdoHcyase (S-adenosylhomocysteine hydrolase) deficiency. Two point mutations in the AdoHcyase gene, the missense mutation p.Y143C (AdoHcyase in which Tyr143 is replaced by cysteine) and the truncation mutation p.W112stop (AdoHcyase in which Trp112 is replaced by opal stop codon) were identified [Bari?, Fumi?, Glenn, Cuk, Schulze, Finkelstein, James, Mejaski-Bosnjak, Pazanin, Pogribny et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 4234-4239]. To elucidate the molecular and catalytic properties of AdoHcyase, we have made recombinant wild-type and mutant p.Y143C (AdoHcyase in which Tyr143 is replaced by cysteine) enzymes for a comparative analysis. The catalytic rates of p.Y143C protein in the directions of S-adenosylhomocysteine synthesis or hydrolysis are decreased from 65% to 75%. Further, the oxidation states of coenzyme NAD differ between mutant and wild-type protein, with an increased NADH accumulation in the mutant p.Y143C enzyme of 88% NADH (wild-type contains 18% NADH). Quantitative binding of NAD is not affected. Native polyacrylamide gel electrophoresis showed, that mutant p.Y143C subunits are able to form the tetrameric complex as is the wild-type enzyme. CD analysis showed that the p.Y143C mutation renders the recombinant protein thermosensitive, with an unfolding temperature significantly reduced by 7 degrees C compared with wild-type protein. Change of Glu115 to lysine in wild-type protein causes a change in thermosensitivity almost identical with that found in the p.Y143C enzyme, indicating that the thermosensitivity is due to a missing hydrogen bond between Tyr143 and Glu115. We emphasize involvement of this particular hydrogen bond for subunit folding and/or holoenyzme stability. In summary, a single mutation in the AdoHcyase affecting both the oxidation state of bound co-factor NAD and enzyme stability is present in a human with AdoHcyase deficiency.  相似文献   

6.
Elrod P  Zhang J  Yang X  Yin D  Hu Y  Borchardt RT  Schowen RL 《Biochemistry》2002,41(25):8134-8142
Residues glutamate 156 (E156), aspartate 190 (D190), asparagine 181 (N181), lysine 186 (K186), and asparagine 191 (N191) in the active site of S-adenosylhomocysteine (AdoHcy) hydrolase have been mutated to alanine (A). AdoHcy hydrolase achieves catalysis of AdoHcy hydrolysis to adenosine (Ado) and homocysteine (Hcy) by means of a redox partial reaction (3'-oxidation of AdoHcy at the beginning and 3'-reduction of Ado at the end of the catalytic cycle) spanning an elimination/addition partial reaction (elimination of Hcy from the oxidized substrate and addition of water to generate the oxidized product), with the enzyme in an open NAD(+) form in the ligand-free state and in a closed NADH form during the elimination/addition partial reaction. Mutation K186A reduces the rate of a model enzymatic reaction for the redox partial reaction by a factor of 280000 and the rate of a model reaction for the elimination/addition partial reaction by a factor of 24000, consistent with a primary catalytic role in both partial reactions as a proton donor/acceptor at the 3'-OH/3'-keto center. Secondary roles for N181 and N191 in localizing the flexible side chain of K186 in a catalytically effective position are supported by rate reduction factors for N181A of 2500 (redox) and 240 (elimination/addition) and for N191A of 730 (redox) and 340 (elimination/addition). A role of D190 in orienting the substrate for effective transition-state stabilization is consistent with rate reduction factors of 1300 (redox) and 30 (elimination/addition) for D190A. Residue E156 may act to maintain K186 in the desired protonation state: rate deduction factors are 1100 (redox) and 70 (elimination/addition). The mutational increases in free energy barriers for k(cat)/K(M) are described by a linear combination of the effects for the partial reactions with the coefficients equal to the fractional degree that each partial reaction determines the rate for k(cat)/K(M). A similar linear equation for k(cat) overestimates the barrier increase by a uniform 5 kJ/mol, probably reflecting reactant-state stabilization by the wild-type enzyme that is abolished by the mutations.  相似文献   

7.
Two active site residues, Asp-98 and His-255, of copper-containing nitrite reductase (NIR) from Alcaligenes faecalis have been mutated to probe the catalytic mechanism. Three mutations at these two sites (D98N, H255D, and H255N) result in large reductions in activity relative to native NIR, suggesting that both residues are involved intimately in the reaction mechanism. Crystal structures of these mutants have been determined using data collected to better than 1. 9-A resolution. In the native structure, His-255 Nepsilon2 forms a hydrogen bond through a bridging water molecule to the side chain of Asp-98, which also forms a hydrogen bond to a water or nitrite oxygen ligated to the active site copper. In the D98N mutant, reorientation of the Asn-98 side chain results in the loss of the hydrogen bond to the copper ligand water, consistent with a negatively charged Asp-98 directing the binding and protonation of nitrite in the native enzyme. An additional solvent molecule is situated between residues 255 and the bridging water in the H255N and H255D mutants and likely inhibits nitrite binding. The interaction of His-255 with the bridging water appears to be necessary for catalysis and may donate a proton to reaction intermediates in addition to Asp-98.  相似文献   

8.
BACKGROUND/AIMS: The methylation potential (MP) is defined as the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). It was shown recently that hypoxia increases AdoMet/AdoHcy ratio in HepG2 cells (Hermes et al., Exp Cell Res 294: 325-334, 2004). In the present study, we compared AdoMet/AdoHcy ratio and energy metabolism in HepG2, HEK-293, HeLa, MCF-7 and SK-HEP-1 cell lines under normoxia and hypoxia. METHODS: Metabolite concentrations were measured by HPLC. In addition, AdoHcy hydrolase (AdoHcyase) activity was determined photometrically. RESULTS: Under normoxia HepG2 cells show the highest AdoMet/AdoHcy ratio of 53.4 +/- 3.3 followed by MCF-7 and SK-HEP-1 cells with a AdoMet/AdoHcy ratio of 14.4 +/- 1.1 and 21.1 +/- 1.3, respectively. The lowest AdoMet/AdoHcy ratios are exhibited by HeLa and HEK-293 cells (6.6 +/- 0.7 and 7.1 +/- 0.3). Hypoxia does not significantly change the MP in MCF-7 and HeLa cells, but alters the MP in HepG2, HEK-293 and SK-HEP-1 cells. These alterations are dependent on the cell density. Under normoxia HepG2 cells exhibit AdoHcyase activity of 2.5 +/- 0.2 nmol min(-1) mg(-1) protein. All other cell lines show 3-5 times lower enzyme activity. Interestingly, hypoxia affects AdoHcyase activity only in HepG2 cells. CONCLUSIONS: Our data clearly show that the cell lines are characterized by different MP and different behavior under hypoxia. That implies that a lower MP is not necessarily associated with impaired transmethylation activity and cellular function.  相似文献   

9.
The role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides has been investigated by a structural and functional characterization of the D177N mutant enzyme. Its three-dimensional structure has been determined by X-ray cryocrystallography in the presence of NAD(+) and in the presence of glucose 6-phosphate plus NADPH. The structure of a glucose 6-phosphate complex of a mutant (Q365C) with normal enzyme activity has also been determined and substrate binding compared. To understand the effect of Asp-177 on the ionization properties of the catalytic base His-240, the pH dependence of kinetic parameters has been determined for the D177N mutant and compared to that of the wild-type enzyme. The structures give details of glucose 6-phosphate binding and show that replacement of the Asp-177 of the catalytic dyad with asparagine does not affect the overall structure of glucose 6-phosphate dehydrogenase. Additionally, the evidence suggests that the productive tautomer of His-240 in the D177N mutant enzyme is stabilized by a hydrogen bond with Asn-177; hence, the mutation does not affect tautomer stabilization. We conclude, therefore, that the absence of a negatively charged aspartate at 177 accounts for the decrease in catalytic activity at pH 7.8. Structural analysis suggests that the pH dependence of the kinetic parameters of D177N glucose 6-phosphate dehydrogenase results from an ionized water molecule replacing the missing negative charge of the mutated Asp-177 at high pH. Glucose 6-phosphate binding orders and orients His-178 in the D177N-glucose 6-phosphate-NADPH ternary complex and appears to be necessary to form this water-binding site.  相似文献   

10.
Open reading frame 1 of Bamboo mosaic virus (BaMV), a Potexvirus in the alphavirus-like superfamily, encodes a 155-kDa replicase responsible for the formation of the 5' cap structure and replication of the viral RNA genome. The N-terminal domain of the viral replicase functions as an mRNA capping enzyme, which exhibits both GTP methyltransferase and S-adenosylmethionine (AdoMet)-dependent guanylyltransferase activities. We mutated each of the four conserved amino acids among the capping enzymes of members within alphavirus-like superfamily and a dozen of other residues to gain insight into the structure-function relationship of the viral enzyme. The mutant enzymes were purified and subsequently characterized. H68A, the mutant enzyme bearing a substitution at the conserved histidine residue, has an approximately 10-fold increase in GTP methyltransferase activity but completely loses the ability to form the covalent m(7)GMP-enzyme intermediate. High-pressure liquid chromatography analysis confirmed the production of m(7)GTP by the GTP methyltransferase activity of H68A. Furthermore, the produced m(7)GTP sustained the formation of the m(7)GMP-enzyme intermediate for the wild-type enzyme in the presence of S-adenosylhomocysteine (AdoHcy), suggesting that the previously observed AdoMet-dependent guanylation of the enzyme using GTP results from reactions of GTP methylation and subsequently guanylation of the enzyme using m(7)GTP. Mutations occurred at the other three conserved residues (D122, R125, and Y213), and H66 resulted in abolition of activities for both GTP methylation and formation of the covalent m(7)GMP-enzyme intermediate. Mutations of amino acids such as K121, C234, D310, W312, R316, K344, W406, and K409 decreased both activities by various degrees, and the extents of mutational effects follow similar trends. The affinity to AdoMet of the various BaMV capping enzymes, except H68A, was found in good correlations with not only the magnitude of GTP methyltransferase activity but also the capability of forming the m(7)GMP-enzyme intermediate. Taken together with the AdoHcy dependence of guanylation of the enzyme using m(7)GTP, a basic working mechanism, with the contents of critical roles played by the binding of AdoMet/AdoHcy, of the BaMV capping enzyme is proposed and discussed.  相似文献   

11.
5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/AdoHcy) nucleosidase is a key enzyme in a number of critical biological processes in many microbes. This nucleosidase catalyzes the irreversible hydrolysis of the N(9)-C(1') bond of MTA or AdoHcy to form adenine and the corresponding thioribose. The key role of the MTA/AdoHcy nucleosidase in biological methylation, polyamine biosynthesis, methionine recycling, and bacterial quorum sensing has made it an important antimicrobial drug target. The crystal structures of Escherichia coli MTA/AdoHcy nucleosidase complexed with the transition state analog, formycin A (FMA), and the nonhydrolyzable substrate analog, 5'-methylthiotubercidin (MTT) have been solved to 2.2- and 2.0-A resolution, respectively. These are the first MTA/AdoHcy nucleosidase structures to be solved in the presence of inhibitors. These structures clearly identify the residues involved in substrate binding and catalysis in the active site. Comparisons of the inhibitor complexes to the adenine-bound MTA/AdoHcy nucleosidase (Lee, J. E., Cornell, K. A., Riscoe, M. K., and Howell, P. L. (2001) Structure (Camb.) 9, 941-953) structure provide evidence for a ligand-induced conformational change in the active site and the substrate preference of the enzyme. The enzymatic mechanism has been re-examined.  相似文献   

12.
Multiple sequence alignment of Streptomyces lividans acetylxylan esterase A and other carbohydrate esterase family 4 enzymes revealed the following conserved amino acid residues: Asp-12, Asp-13, His-62, His-66, Asp-130, and His-155. These amino acids were mutated in order to investigate a functional role of these residues in catalysis. Replacement of the conserved histidine residues by alanine caused significant reduction of enzymatic activity. Maintenance of ionizable carboxylic group in side chains of amino acids at positions 12, 13, and 130 seems to be necessary for catalytic efficiency. The absence of conserved serine excludes a possibility that the enzyme is a serine esterase, in contrast to acetylxylan esterases of carbohydrate esterase families 1, 5, and 7. On the contrary, total conservation of Asp-12, Asp-13, Asp-130, and His-155 along with dramatic decrease in enzyme activity of mutants of either of these residues lead us to a suggestion that acetylxylan esterase A from Streptomyces lividans and, by inference, other members of carbohydrate esterase family 4 are aspartic deacetylases. We propose that one component of the aspartate dyad/triad functions as a catalytic nucleophile and the other one(s) as a catalytic acid/base. The ester/amide bond cleavage would proceed via a double displacement mechanism through covalently linked acetyl-enzyme intermediate of mixed anhydride type.  相似文献   

13.
Various ribonucleoside 2',3'-dialdehydes, including adenosine dialdehyde, S-adenosylhomocysteine (AdoHcy) dialdehyde, and 5-(methylthio)-5'-deoxyadenosine (MTA) dialdehyde, were shown to be potent inhibitors of bovine liver AdoHcy hydrolase (EC 3.3.1.1). These ribonucleoside 2',3'-dialdehydes produce both time-dependent and concentration-dependent inactivation of the AdoHcy hydrolase. The inactivation appears to be irreversible since the enzyme activity cannot be recovered after prolonged dialysis against phosphate buffer. However, a substantial percentage of the enzyme activity could be recovered when the inactivated enzyme was dialyzed against a nitrogen buffer [e.g., tris(hydroxymethyl)aminomethane (Tris)]. This reversal of inhibition could be prevented, however, by pretreatment of the ligand-enzyme complex with sodium borohydride prior to dialysis in Tris buffer. Inclusion of substrates (e.g., adenosine or AdoHcy) afforded protection of the enzyme from the inactivation induced by the ribonucleoside 2',3'-dialdehydes. These data suggest that the bond formed between the enzyme and the inhibitor is probably a Schiff base linkage between the aldehydic functionality of the inhibitor and a protein lysinyl residue in or around the adenosine-AdoHcy binding site. When [2,8-3H]adenosine dialdehyde was used, a stoichiometry of 1.73 nmol of inhibitor bound per nmol of AdoHcy hydrolase was determined. Analysis of the kinetics of enzyme inactivation using the Ackermann-Potter approach indicates that adenosine dialdehyde is a tight-binding inhibitor, exhibiting a stoichiometry of one to two molecules of inhibitor bound to one molecule (tetramer) of enzyme and a Ki = 2.39 nM.  相似文献   

14.
Functional interaction among catalytic residues in subtilisin BPN'   总被引:4,自引:0,他引:4  
P Carter  J A Wells 《Proteins》1990,7(4):335-342
Variants of the serine protease, subtilisin BPN', in which the catalytic triad residues (Ser-221, His-64, and Asp-32) are replaced singly or in combination by alanine retain activities with the substrate N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (sAAPF-pna) that are at least 10(3) to 10(4) above the non-enzymatic rate [Carter, P., Wells, J.A. Nature (London) 322:564-568, 1988]. A possible source of the residual activity was the hydrogen bond with the N delta 2 of Asn-155 that helps to stabilize the oxyanion generated in the tetrahedral transition state during amide bond hydrolysis by the wild-type enzyme. Replacing Asn-155 by Gly (N155G) lowers the turnover number (kcat) for sAAPF-pna by 150-fold with virtually no change in the Michaelis constant (KM). However, upon combining the N155G and S221A mutations to give N155G:S221A, kcat is actually 5-fold greater than for the S221A enzyme. Thus, the catalytic role of Asn-155 is dependent upon the presence of Ser-221. The residual activity of the N155G:S221A enzyme (approximately 10(4)-fold above the uncatalyzed rate) is not an artifact because it can be completely inhibited by the third domain of the turkey ovomucoid inhibitor (OMTKY3), which forms a strong 1:1 complex with the active site. The mutations N155G and S221A individually weaken the interaction between subtilisin and OMTKY3 by 1.8 and 2.0 kcal/mol, respectively, and in combination by 2.1 kcal/mol. This is consistent with disruption of stabilizing interactions around the reactive site carbonyl of the OMTKY3 inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Recently, S-adenosylhomocysteine hydrolase deficiency was confirmed for the first time in an adult. Two missense mutations in codons 89 (A>V) and 143 (Y>C) in the AdoHcyase gene were identified [N.R.M. Buist, B. Glenn, O. Vugrek, C. Wagner, S. Stabler, R.H. Allen, I. Pogribny, A. Schulze, S.H. Zeisel, I. Bari?, S.H. Mudd, S-Adenosylhomocysteine hydrolase deficiency in a 26-year-old man, J. Inh. Metab. Dis. 29 (2006) 538-545]. Accordingly, we have proven the Y143C mutation to be highly inactivating [R. Beluzi?, M. Cuk, T. Pavkov, K. Fumi?, I. Bari?, S.H. Mudd, I. Jurak, O. Vugrek, A single mutation at tyrosine 143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and effects the oxidation state of bound co-factor NAD, Biochem. J. 400 (2006) 245-253]. Now we report that the A89V exchange leads to a 70% loss of enzymatic activity, respectively. Circular dichroism analysis of recombinant p.A89V protein shows a significantly reduced unfolding temperature by 5.5 degrees C compared to wild-type. Gel filtration of mutant protein is almost identical to wild-type indicating assembly of subunits into the tetrameric complex. However, electrophoretic mobility of p.A89V is notably faster as shown by native polyacrylamide gel electrophoresis implicating changes to the overall charge of the mutant complex. 'Bioinformatics' analysis indicates that Val(89) collides with Thr(84) causing sterical incompatibility. Performing site-directed mutagenesis changing Thr(84) to 'smaller' Ser(84) but preserving similar physico-chemical properties restores most of the catalytic capabilities of the mutant p.A89V enzyme. On the other hand, substitution of Thr(84) with Lys(84) or Gln(84), thereby introducing residues with higher volume in proximity to Ala(89) results in inactivation of wild-type protein. In view of our mutational analysis, we consider changes in charge and the sterical incompatibility in mutant p.A89V protein as main reason for enzyme malfunction with AdoHcyase deficiency as consequence.  相似文献   

16.
Bacillus subtilis strain 168 YteR has been identified as a novel enzyme "unsaturated rhamnogalacturonyl hydrolase" classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, releasing unsaturated galacturonic acid (DeltaGalA) from the substrate. The most likely candidate catalytic residue is Asp-143. Here, we show the structure of D143N in complex with unsaturated RG disaccharide (substrate) determined at 1.9A resolution by X-ray crystallography. This structural feature directly contributes to the postulation of the enzyme reaction mechanism. YteR triggers the hydration of vinyl ether group in DeltaGalA, but not of glycoside bond, by using Asp-143 as a general acid and base catalyst. Asp-143 donates proton to the double bond of DeltaGalA as an acid catalyst and also deprotonates a water molecule as a base catalyst. Deprotonated water molecule attacks the C5 atom of DeltaGalA.  相似文献   

17.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

18.
Evidence for the involvement of Ser-203, His-447, and Glu-334 in the catalytic triad of human acetylcholinesterase was provided by substitution of these amino acids by alanine residues. Of 20 amino acid positions mutated so far in human acetylcholinesterase (AChE), these three were unique in abolishing detectable enzymatic activity (less than 0.0003 of wild type), yet allowing proper production, folding, and secretion. This is the first biochemical evidence for the involvement of a glutamate in a hydrolase triad (Schrag, J.D., Li, Y., Wu, M., and Cygler, M. (1991) Nature 351, 761-764), supporting the x-ray crystal structure data of the Torpedo californica acetylcholinesterase (Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253, 872-879). Attempts to convert the AChE triad into a Cys-His-Glu or Ser-His-Asp configuration by site-directed mutagenesis did not yield effective AChE activity. Another type of substitution, that of Asp-74 by Gly or Asn, generated an active enzyme with increased resistance to succinylcholine and dibucaine; thus mimicking in an AChE molecule the phenotype of the atypical butyrylcholinesterase natural variant (D70G mutation). Mutations of other carboxylic residues Glu-84, Asp-95, Asp-333, and Asp-349, all conserved among cholinesterases, did not result in detectable alteration in the recombinant AChE, although polypeptide productivity of the D95N mutant was considerably lower. In contrast, complete absence of secreted human AChE polypeptide was observed when Asp-175 or Asp-404 were substituted by Asn. These two aspartates are conserved in the entire cholinesterase/thyroglobulin family and appear to play a role in generating and/or maintaining the folded state of the polypeptide. The x-ray structure of the Torpedo acetylcholinesterase supports this assumption by revealing the participation of these residues in salt bridges between neighboring secondary structure elements.  相似文献   

19.
All known pseudouridine synthases have a conserved aspartic acid residue that is essential for catalysis, Asp-48 in Escherichia coli TruB. To probe the role of this residue, inactive D48C TruB was oxidized to generate the sulfinic acid cognate of aspartic acid. The oxidation restored significant but reduced catalytic activity, consistent with the proposed roles of Asp-48 as a nucleophile and general base. The family of pseudouridine synthases including TruB also has a nearly invariant histidine residue, His-43 in the E. coli enzyme. To examine the role of this conserved residue, site-directed mutagenesis was used to generate H43Q, H43N, H43A, H43G, and H43F TruB. Except for phenylalanine, the substitutions seriously impaired the enzyme, but all of the altered TruB retained significant activity. To examine the roles of Asp-48 and His-43 more fully, the pH dependences of wild-type, oxidized D48C, and H43A TruB were determined. The wild-type enzyme displays a typical bell-shaped profile. With oxidized D48C TruB, logk(cat) varies linearly with pH, suggesting the participation of specific rather than general base catalysis. Substitution of His-43 perturbs the pH profile, but it remains bell-shaped. The ascending limb of the pH profile is assigned to Asp-48, and the descending limb is tentatively ascribed to an active site tyrosine residue, the bound substrate uridine, or the bound product pseudouridine.  相似文献   

20.
Mueller M  Nidetzky B 《FEBS letters》2007,581(7):1403-1408
Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.3)-fold, and independently of leaving group ability and nucleophilic reactivity of the substrate, respectively. pH dependences of the catalytic steps were similar for D295N and wild-type. The 10(5)-fold preference of the wild-type for glucosyl transfer compared with mannosyl transfer from phosphate to fructose was lost in D295N and D295E. Selective disruption of catalysis to glucosyl but not mannosyl transfer in the two mutants suggests that the side chain of Asp-295, through a strong hydrogen bond with the equatorial sugar 2-hydroxyl, stabilizes the transition states flanking the beta-glucosyl enzyme intermediate by > or = 23kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号