首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以番茄(Solanum lycopersicum L.)品种‘Micro Tom’为试材,从其果实中克隆得到番茄类钙调磷酸酶B基因(Tomato Calcineurin B-Like gene,SlCBL1),构建其带有报告基因的e-GFP植物表达载体,分析番茄果实中SlCBL1基因超表达与成熟发育进程的相互关系。结果显示:(1)与对照非转基因植株以及转空载植株相比,转SlCBL1基因番茄中SlCBL1基因过量表达,而且能够使番茄果实成熟期提前3~5d,表明SlCBL1基因可促进番茄果实成熟。(2)番茄果实成熟相关基因的表达量也受到不同程度调控,其中番茄成熟过程中的色素合成基因、乙烯路径基因以及果实成熟相关转录因子都受到强烈的调控,与对照相比表达量分别上调5~10倍。研究表明,SlCBL1基因能够促进番茄果实成熟,而且通过影响色素合成基因以及果实成熟相关转录因子来调控番茄果实成熟。  相似文献   

2.
该研究以草莓品种‘红颜’(Fragaria×ananassa‘Benihoppe’)为试材,分析了草莓果实发育不同阶段蔗糖磷酸合成酶基因(FaSPS1)的表达量变化,采用PCR方法克隆FaSPS1基因,构建带有报告基因的e-GFP植物表达载体,通过瞬时转基因方法转化草莓果实,采用观察绿色荧光和检测目的基因表达量的方法鉴定转基因植物,并分析FaSPS1基因超表达和反义表达后草莓果实的成熟发育以及与成熟相关的基因表达量变化,探究FaSPS1基因在果实成熟发育中的特殊作用,为深入了解草莓果实发育和成熟调控的分子机理提供思路。结果显示:(1)成功克隆得到FaSPS1基因(GenBank登录号AB267868.1);成功构建带有报告基因e-GFP的FaSPS1基因超表达载体和反义基因表达载体,通过瞬时转基因方法转化并经荧光和目的基因表达量检测的方法鉴定获得转FaSPS1基因草莓植株。(2)与空载对照和非转基因果实相比,FaSPS1基因过表达可促进草莓果实成熟,能够使草莓果实成熟期提前,且果实中蔗糖果糖含量升高;但反义表达后会抑制草莓果实成熟,果实中苹果酸含量升高。(3)基因超表达或者反义表达后,草莓果实成熟相关基因的表达量受到不同程度调控,其中糖代谢基因FaSPS2/3、FaSUT1,果实成软化基因FaEXP1、FaEXP3、FaXYL1以及激素代谢基因FaJAZ1、FaJAZ2、FaJAZ8、FaOPR3、FaPYL1、FaPYL8、FaPYL9、FaNCED1表达量变化最明显。研究推测,FaSPS1基因可能通过影响草莓果实中和成熟相关的糖代谢基因、果实软化基因以及激素代谢基因来调控草莓果实成熟。  相似文献   

3.
果实成熟的分子生物学   总被引:17,自引:0,他引:17  
就番茄和其它植物果实多聚半乳糖醛酸酶(PG)基因、ACC合成酶和ACC氧化酶基因等成熟相关基因的筛选、鉴定和表达及基因工程对调控果实硬度、色泽、风味等方面的应用与前景作了评述。  相似文献   

4.
该研究以草莓品种‘红颜’(Fragaria ananassa‘Benihoppe’)果实为试材,从红颜草莓果实中克隆得到1个ABA受体基因FaPYL9,该基因含有1个555bp核苷酸的开放阅读框,编码184个氨基酸序列,含有1个氨基酸保守区域PYR_PYL_RCAR_like。FaPYL9基因在草莓果实发育7个时期的表达量分析表明,随着草莓果实的成熟,FaPYL9基因的表达量迅速升高,并且在果实全红时表达量达到最高;干扰草莓果实中的FaPYL9基因,会延迟草莓果实成熟期3~5d,同时会降低与草莓果实着色相关的FaCHS和FaUFGT基因的表达量,并且果实中的蔗糖含量以及花青素含量也随之降低,ABA含量和果实硬度增加。研究表明,FaPYL9基因在草莓果实成熟发育过程中起重要作用,能促进草莓果实成熟。  相似文献   

5.
该研究以草莓‘红颜’(Fragaria ananassa Duch.‘Benihoppe’)为试材,于草莓花后15d采用注射法开始注射茉莉酸甲酯(MeJA,浓度为400μmol/L),分析MeJA对草莓果实发育进程的影响及其相关基因的表达,以揭示MeJA在草莓果实发育和成熟调控中的作用及其分子机理。结果表明:(1)MeJA处理草莓果实后,果实变红成熟期比对照显著提前,平均提前4d;(2)随着草莓果实发育成熟,MeJA处理的茉莉酸(JA)合成基因FaOPDA1的表达量迅速升高;(3)FaOPDA1基因在草莓果实中的超表达能够促进草莓果实提前成熟3~5d,且FaOPDA1基因的超表达能够诱导与草莓果实成熟相关的一系列基因的表达量升高,从而促进草莓果实提前成熟。  相似文献   

6.
目前,互联网上提供许多关于基因及其相关信息的数据库,从这些资料库中提取的资料信息,可用于遗传,生化,分子生物学等各种形式的研究。TIGR Tomato Gene Index数据库中的信息为研究番茄果实成熟开辟了新思路。本研究通过对该数据库的分析,发现了一些在番茄果实成熟过程中差异表达的基因。并进一步通过基因芯片软件和文献挖掘的方法对这些基因进行了分析,结果发现了一些新的与果实成熟相关的基因。这对研究番茄果实成熟提供有价值的信息和思路。  相似文献   

7.
为了探究桃缝合线局部早熟的分子机制,该研究以‘京红’桃芽变(JHM)及其野生型(JHW)的果实为试材,测定分析了缝合线和果面部位的硬度、花青素含量以及差异基因的表达特征。结果显示:(1)‘京红’桃芽变比其野生型果实晚成熟约2周,芽变果实缝合线部位比果面部位局部早成熟,且提前2周时间转为红色。(2)随着果实的成熟,‘京红’桃野生型及其芽变的果实硬度逐渐降低,花青素含量逐渐升高,并均在花后66 d发生明显变化,芽变缝合线部位硬度比果面部位更低,花青素含量比果面更高。(3)在花后66 d,芽变果实的缝合线与果面部位差异表达基因数高达1889个,显著富集在代谢途径、次生代谢产物的生物合成、植物激素信号转导、苯丙素的生物合成等代谢途径;从中筛选到24个缝合线早熟相关基因,包含5个细胞壁降解相关基因,9个色素合成、调控相关基因,5个乙烯合成与转导相关基因,3个生长素应答基因和2个NAC转录因子。(4)对24个早熟相关基因中的12个差异表达基因进行荧光定量验证结果表明,基因表达趋势与转录组测序结果相一致。研究发现,桃芽变果实种仁产生的乙烯通过缝合线向周围扩散,促进缝合线部位ACS1和ACO1等基因的转录,并合成了较多乙烯,乙烯又进一步调控该部位PG、XTH33、CHS、DFR等细胞壁降解与色素合成相关基因的表达,导致该部位的果肉提前成熟。  相似文献   

8.
为了研究光照对红颜草莓(Fragaria×ananassa Duch.‘Benihoppe’)果实着色、花青素含量及花青素合成相关基因表达的影响,本文采用高效液相色谱法(HPLC)和实时荧光定量PCR技术测定了不同遮阴处理下(透光率100%、75%、25%)草莓果实花青素含量及色素相关基因的表达情况。结果显示,与100%透光率下的草莓果实相比,在75%和25%透光率下合成的花青素含量分别下降了41.58%和92.54%;和花青素合成相关基因的表达也都有不同程度的下降,其中二氢黄酮醇4-还原酶基因(FaDFR)、类黄酮-3'羟化酶基因(FaF3'H)和类黄酮3-O-糖基转移酶基因(FaUFGT)的表达与花青素含量相关性达到显著水平;此外,在遮光条件下转录因子FaMYB10、FaMYB1表达也明显下调。可见,光照是影响草莓果实着色的关键环境因素,遮光抑制色素相关功能基因和转录因子的表达,阻碍了果实中花青素的合成,最终导致果实着色差异。  相似文献   

9.
桃树体不同部位果实着色差异及其与环境因子的关系研究   总被引:1,自引:0,他引:1  
为探讨树体冠层不同部位桃果实着色机制差异及其与环境因子的关系,以晚熟桃品种‘霞晖8号’为试材,研究了果实3个典型发育时期(硬核期、膨大期、成熟期)树体冠层上部、中部外围、中部内膛和下部的温度、光照环境因子变化动态,并就其对果皮色泽、色素含量的影响及与果实着色相关的基因表达特点进行解析。结果表明:(1)与冠层下部果实相比,‘霞晖8号’冠层上部、中部外围和中部内膛成熟果实果皮a~*/b~*(红色饱和度/黄色饱和度)显著较高。(2)冠层下部成熟果实的果皮花色素苷含量最低而叶绿素含量最高,且与其他部位间差异显著。(3)果实不同发育时期花色素苷合成相关基因的表达量差异表明,果皮花色素苷合成是多基因协同调控的过程。(4)果实转色前,低光照强度抑制了花色素苷合成相关基因的表达,其中对UFGT、DFR、CHS基因的调控作用最明显;果实成熟期,与高光照条件相比,低光照条件下果皮花色素苷合成相关基因上调表达。研究认为,树体冠层不同部位光照条件差异可能是导致果实着色差异的主要环境因素之一,它通过调节与果皮花色素苷积累相关的基因表达水平控制果皮的着色。  相似文献   

10.
根据已报道的甜瓜CMe-ERF1和CMe-ERF2基因cDNA序列设计合成特异性引物,应用RT-PCR技术从甜瓜品种‘河套蜜瓜’成熟果实中克隆得到CMe-ERF1和CMe-ERF2基因cDNA全长编码区序列,分别为498bp和822bp.序列比对分析表明,得到的cDNA序列与已报道的Andes甜瓜相应基因的cDNA序列完全一致.果实不同发育时期实时定量PCR检测结果表明,CMe-ERF1、CMe-ERF2基因表达与甜瓜果实成熟及乙烯生成量显著相关,表明该基因可能对果实成熟起重要作用.  相似文献   

11.
Fruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development. KEY MESSAGE: Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.  相似文献   

12.
Germinating conidia of many phytopathogenic fungi must differentiate into an infection structure called the appressorium in order to penetrate into their hosts. This differentiation is known to require contact with a hard surface. However, the molecular basis for this requirement is not known. Induction of this differentiation in the avocado pathogen, Colletotrichum gloeosporioides, by chemical signals such as the host's surface wax or the fruit-ripening hormone, ethylene, requires contact of the conidia with a hard surface for about 2 h. To study molecular events triggered by hard-surface contact, we isolated several genes expressed during the early stage of hard-surface treatment by a differential-display method. The genes that encode Colletotrichum hard-surface induced proteins are designated chip genes. In this study, we report the characterization of CHIP2 and CHIP3 genes that would encode proteins with molecular masses of 65 and 64 kDa, respectively, that have no homology to any known proteins. The CHIP2 product would contain a putative nuclear localization signal, a leucine zipper motif, and a heptad repeat region which might dimerize into coiled-coil structure. The CHIP3 product would be a nine-transmembrane-domain-containing protein. RNA blots showed that CHIP2 and CHIP3 are induced by a 2-h hard-surface contact. However, disruption of these genes did not affect the appressorium-forming ability and did not cause a significant decrease in virulence on avocado or tomato fruits suggesting that C. gloeosporioides might have genes functionally redundant to CHIP2 and CHIP3 or that these genes induced by hard-surface contact control processes not directly involved in pathogenesis.  相似文献   

13.
We have cloned and sequenced four pollen-specific cDNAs. None of the clones are complete at their 5' ends. One of the clones shows significant homology to the tomato fruit-ripening polygalacturonase and to a pollen-specific polygalacturonase from Oenothera. The other three clones have no significant homologies to any reported sequence.  相似文献   

14.
The gene encoding acetyl CoA:deacetylvindoline 4-O-acetyltransferase (DAT) (EC 2.3.1.107) which catalyzes the last step in vindoline biosynthesis was isolated and characterized. The genomic clone encoded a 50 kDa polypeptide containing the sequences of nine tryptic fragments derived from the purified DAT heterodimer. However, cleavage of DAT protein to yield a heterodimer appears to be an artifact of the protein purification procedure, since the size of the protein (50 kDa) cross-reacting with anti-DAT antibody in seedlings and in leaves of various ages also corresponds to the size of the active recombinant enzyme. Studies with the intact plant and with developing seedlings showed that induction of DAT mRNA, protein accumulation and enzyme activity occurred preferentially in vindoline producing tissues such as leaves and cotyledons of light-treated etiolated seedlings. The ORF of DAT showed significant sequence identity to 19 other plant genes, whose biochemical functions were mostly unknown. The Mr of ≈ 50 kDa, a HXXXDG triad, and a DFGWGKP consensus sequence are highly conserved among the 20 plant genes and these criteria may be useful to identify this type of acyltransferase. The involvement of some of these genes in epicuticular wax biosynthesis, fruit-ripening and in benzoyltransfer reactions indicates that the plant kingdom contains a superfamily of multifunctional acyltransferases which operate by a reaction mechanism related to the ancient chloramphenicol O-acetyltransferase and dihydrolipoyl acetyltransferase class of enzymes.  相似文献   

15.
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.  相似文献   

16.
Two vertebrate-dispersed woody plants, Vaccinium corymbosum and Amelanchier arborea, were studied in southeastern Michigan to determine the proximate causes of their within-plant fruit ripening asynchrony. Individual flowers were followed from opening (A. arborea) or fruit initiation (V. corymbosum) to fruit ripening. Fifty-nine to 100% of the variance in fruit-ripening dates within V. corymbosum plants was due to variance in the development time; little was due to variance in initiation dates or covariance between these two terms. Similarly, 98% of the variance in fruit-ripening dates in A. arborea was due to variance in the number of days from flower opening to fruit ripening. Fruit developmental time in V. corymbosum and flower-fruit interval in A. arborea were significantly correlated with seed number: fruits with more seeds developed faster. I hypothesize that in both species ripening asynchrony is largely a consequence of variability in seed number.  相似文献   

17.
18.
Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits. Through reverse genetics and gene expression studies, the importance of Rab guanosine triphosphatases (GTPases) as integral regulators of vesicle trafficking to the cell wall has been revealed. It has been a decade since a rich literature on the involvement of Rab GTPase in ripening was published. Therefore, this review sets out to summarize the progress in studies on the pivotal roles of Rab GTPases in fruit development and sheds light on new approaches that could be adopted in the fields of postharvest biology and fruit-ripening research.  相似文献   

19.
The ontogeny of the flower and the fruit of the Macaronesian endemicCeballosia were investigated morphologically and anatomically by SEM and LM. The fruit does not break into four mericarps, but splits into two two-seeded carpids. Exo- and mesocarp wither after fruit-ripening and the endocarp constitutes the remaining outer wall. Within the stony endocarp tubular parenchymatic isles develop which are linked with the mesocarp. Subsequent disintegration pretends additional locules in the mature fruit. Similar pericarp formations are also found in someHeliotropium species but result from a different ontogeny. Therefore, although a close relationship ofCeballosia toHeliotropium is obvious, the taxon should be treated as a separate genus.Carpological investigations in theHeliotropioideae (Boraginaceae) 2. For part 1 seeHilger (1987).  相似文献   

20.
During bell pepper (Capsicum annuum L.) fruit ripening, beta-galactosidase activity increased markedly as compared with other glycosidases. We purified 77.5 kDa exo-1,4-beta-D-galactanase from red bell pepper fruit classified as beta-galactosidase II. A marked decrease in galactose content appeared during fruit ripening, especially in the pectic fraction. The purified enzyme hydrolyzed a considerable amount of galactose residues in this fraction. We isolated bell pepper beta-galactosidase (PBG1) cDNA. This PBG1 protein contained the putative active site, G-G-P-[LIVM]-x-Q-x-E-N-E-[FY], belonging to glycosyl hydrolase family 35. Quantitative RT-PCR revealed that the expression of PBG1 in red fruit was significantly stronger than that from any other tissues. Moreover, expression of PBG1 occurred prior to that of pepper endo-polygalacturonase 1 (PPG1), the major fruit-ripening enzyme. Based on these results, it appears that the hydrolysis of galactose residues in pectic substances is the first event in the ripening process in bell pepper fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号