首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

2.
This paper presents methods developed in order to analyze experimental results concerning the binding of Escherichia coli DNA-dependent RNA polymerase to DNA at high and at low DNA concentrations, using the filter retention assay. The basis hypotheses, under which the mathematical expressions for describing the kinetics of binding are derived, are as follows. (a) At low DNA concentration: equivalence and independence of the specific binding sites; first-order dependence of the binding reaction on both DNA and protein concentration. (b) At high DNA concentration: equivalence and independence of the non-specific binding sites; no direct transfer or one-dimensional sliding of the protein along the DNA. Comparison between theoretical predictions and experimental results at high DNA concentration will allow one to determine the relative value of the rates of binding of RNA polymerase to different promoters (between 1 and 2 in T5 DNA). Binding experiments performed at low DNA concentration are reported in this paper: these results and the analysis which is reported allow one to determine the value of the rate constant of formation of non-filterable complexes for the system fd DNA (replicative form) . RNA-polymerase (kappa a = 3.3 X 10(8) M-1 s-1 in 0.1 M NaCl, 0.01 M MgCl2).  相似文献   

3.
J Waddell  X M Wang    M Wu 《Nucleic acids research》1984,12(9):3843-3856
Chloroplast DNA, isolated from a synchronized culture of Chlamydomonas reinhardii, was digested with restriction endonucleases and examined in the electron microscope. Restriction fragments containing displacement loops (D-loop) were photographed and measured to determine the position of replicated sequences in relation to the restriction enzyme sites. D-loops were located at two positions on the physical map of chloroplast DNA. One replication origin was mapped at about 10 kb upstream of the 5' end of a 16s rRNA gene. The second origin was spaced 6. 5kb apart from the first origin and was about 16.5 kb upstream of the same 16s rRNA. Initiations at those two sites were not always synchronized. Replication initiated with the formation of a D-loop resulting from the synthesis of one daughter strand. After a short initial lag phase, corresponding to the synthesis of 350 +/- 130 bp of one daughter strand, DNA synthesis then proceeded in both directions. Both D-loop regions were preferred binding sites of undetermined protein complexes.  相似文献   

4.
The interaction of RNA polymerase II with non-promoter DNA sites.   总被引:1,自引:0,他引:1       下载免费PDF全文
Various complexes formed between purified RNA polymerase II and simian virus 40 DNA have been characterized with respect to rates of formation, rates of dissociation, and initial velocity of RNA synthesis. Two different types of complexes can form on intact DNA templates. One of these is formed rapidly, but is quite labile; the other forms more slowly, but is moderately stable once formed. The introduction of a single strand break into DNA leads to rapid and stable complex formation, and thus is expected to create the favored binding site. The observed properties of these complexes provide a general framework for describing the interactions of RNA polymerase II at non-promoter DNA sites. This framework appears to be similar to that established for Escherichia coli RNA polymerase interactions, suggesting that the fundamental mode of non-promoter DNA binding is similar for the bacterial, plant, and mammalian enzymes.  相似文献   

5.
6.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

7.
8.
The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.  相似文献   

9.
The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)(2) domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3' flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes.  相似文献   

10.
The FLP recombination target (FRT) can be cut in half so that only one FLP protein binding site is present (a "half site"). FLP protein binds the half sites and joins them into dimeric, asymmetric head-to-head complexes held together chiefly by strong noncovalent interactions. These complexes react with full (normal) FRT sites to generate a variety of products. Analysis of these DNA species reveals that the reaction follows a well-defined reaction pathway that generally parallels the normal reaction pathway. The system is useful in analyzing early steps in recombination, since the identity of the products in a given recombination event unambiguously pinpoints the order in which the cleavage and strand exchange reactions occur. Two conclusions are derived from the present study: (i) Formation of the dimeric head-to-head complex of half sites is a prerequisite to further steps in recombination. (ii) The identity of the base pairs at positions 6 and -6 within the FRT site has a subtle effect in directing the first strand exchange event in the reaction to predominantly one of two possible cleavage sites. In addition, results are presented that suggest that a DNA-DNA pairing intermediate involving only two base pairs of the core sequence is formed prior to the first cleavage and strand exchange. DNA-DNA interactions may therefore not be limited to the isomerization step that follows the first strand exchange.  相似文献   

11.
The archaeal intron-encoded homing enzymes I-PorI and I-DmoI belong to a family of endonucleases that contain two copies of a characteristic LAGLIDADG motif. These endonucleases cleave their intron- or intein- alleles site-specifically, and thereby facilitate homing of the introns or inteins which encode them. The protein structure and the mechanism of DNA recognition of these homing enzymes is largely unknown. Therefore, we examined these properties of I-PorI and I-DmoI by protein footprinting. Both proteins were susceptible to proteolytic cleavage within regions that are equidistant from each of the two LAGLIDADG motifs. When complexed with their DNA substrates, a characteristic subset of the exposed sites, located in regions immediately after and 40-60 amino acids after each of the LAGLIDADG motifs, were protected. Our data suggest that the enzymes are structured into two, tandemly repeated, domains, each containing both the LAGLIDADG motif and two putative DNA binding regions. The latter contains a potentially novel DNA binding motif conserved in archaeal homing enzymes. The results are consistent with a model where the LAGLIDADG endonucleases bind to their non-palindromic substrates as monomeric enzymes, with each of the two domains recognizing one half of the DNA substrate.  相似文献   

12.
The binding sites of calf thymus RNA polymerase II on polyoma DNA were monitored by electron microscopy. Six discrete binding sites were located at positions 0.06, 0.25, 0.57, 0.66, 0.85 and 0.98 on the physical map of polyoma DNA. Although most of these sites are located in easily denaturable regions of the DNA, the strongest binding sites do not overlap with the major A + T-rich regions. In addition, the same binding sites were observed on superhelical or linear polyoma DNA. These results suggest that the eucaryotic RNA polymerase II can recognize specific sequences on double-stranded DNA and not only easily denaturable regions. At least five of these sites correspond to the binding and initiation sites mapped previously for the Escherichia coli RNA polymerase (Lescure et al., 1976).Stable initiation complexes can be formed with both E. coli and calf thymus RNA polymerases in the presence of a single dinucleotide (GpU) and a specific ribotriphosphate (CTP). Under these conditions, the binding of both enzymes to the sites in positions 0.06 and 0.57 is stimulated whereas the binding in positions 0.65 and 0.84 is partially suppressed. Both eucaryotic and procaryotic RNA polymerases may recognize similar sequences of the viral DNA in vitro.  相似文献   

13.
The Flp protein catalyzes a site-specific recombination reaction between two 47 bp DNA sites without the assistance of any other protein or cofactor. The Flp recognition target (FRT) site consists of three nearly identical sequences, two of which are separated by an 8 bp spacer sequence. In order to gain insight into this remarkable protein-DNA interaction we used a variety of chemical probe methods and the missing nucleoside experiment to examine Flp binding. Hydroxyl radical footprints of Flp bound to a recombinationally-competent site fall on opposite faces of canonical B-DNA. The 8 bp spacer region between the two Flp binding sites becomes reactive towards 5-phenyl-1,10-phenanthroline.copper upon Flp binding, indicating that once bound by Flp, this segment of DNA is not in the B-form. Missing nucleoside analysis reveals that within each binding site the presence of two nucleosides on the top strand and four on the bottom, are required for formation of a fully-occupied FRT site. In contrast, loss of any nucleoside in the three binding sites in the FRT interferes with formation of lower-occupancy complexes. DNA molecules with gaps in the 8 bp spacer region are over-represented in complexes with either two or three binding sites occupied by Flp, evidence that DNA flexibility facilitates the cooperative interaction of Flp protomers bound to a recombinationally-active site.  相似文献   

14.
15.
CpG methylation is involved in a wide range of biological processes in vertebrates as well as in plants and fungi. To date, three enzymes, Dnmt1, Dnmt3a, and Dnmt3b, are known to have DNA methyltransferase activity in mouse and human. It has been proposed that de novo methylation observed in early embryos is predominantly carried out by the Dnmt3a and Dnmt3b methyltransferases, while Dntm1 is believed to be responsible for maintaining the established methylation patterns upon replication. Analysis of the sites methylated in vivo using the bisulfite genomic sequencing method confirms the previous finding that some regions of the plasmid are much more methylated by Dnmt3a than other regions on the same plasmid. However, the preferred targets of the enzyme cannot be determined due to the presence of other methylases, DNA binding proteins, and chromatin structure. To discern the DNA targets of Dnmt3a without these compounding factors, sites methylated by Dnmt3a in vitro were analyzed. These analyses revealed that the two cDNA strands have distinctly different methylation patterns. Dnmt3a prefers CpG sites on a strand in which it is flanked by pyrimidines over CpG sites flanked by purines in vitro. These findings indicate that, unlike Dnmt1, Dnmt3a most likely methylates one strand of DNA without concurrent methylation of the CpG site on the complementary strand. These findings also indicate that Dnmt3a may methylate some CpG sites more frequently than others, depending on the sequence context. Methylation of each DNA strand independently and with possible sequence preference is a novel feature among the known DNA methyltransferases.  相似文献   

16.
Abstract

We have characterised complexes between RecA and single-stranded homopolynucleotides by linear dichroism spectroscopy and small angle neutron scattering to investigate base pairing possibilities among DNA strands bound in a RecA filament. We find that in the presence of the non-hydrolysable cofactor ATPγS, and very likely also in the presence of ATP, a RecA fiber has three distinct DNA binding sites, each of which can bind one strand of DNA at a stoichiometry of three nucleotides per RecA monomer. The structural and hydrodynamic properties of the complexes are found to depend on the number of strands bound and on sequence complementarity among the strands. For example, RecA-[homopolymer]3-ATPγS complexes aggregate when either of the strands bound in sites I and II is complementary to the strand bound in site III. We have also studied the RecA catalysed annealing of complementary homopolymers and find it to be most efficient when two strands of one homopolymer are bound per RecA filament prior to the addition of the complementary homopolymer. These results suggest that a DNA strand bound in site III can base-pair with either of the strands in sites I and II, whereas the latter strands are unable to base-pair with each other.  相似文献   

17.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

18.
19.
20.
Tron AE  Comelli RN  Gonzalez DH 《Biochemistry》2005,44(51):16796-16803
Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号