首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has revealed that insulin is secreted in the tear film; its mRNA is expressed in the lachrymal gland (LG) and its receptor in tissues of the ocular surface. To test the hypothesis of insulin production in the LG, we compared normal and diabetic rats for: (1) the presence of insulin and C-peptide, (2) glucose- and carbachol-induced insulin secretion ex-vivo, and (3) biochemical and histological characteristics of diabetic LG that would support this possibility. Four weeks after streptozotocin injection, blood and tears were collected from streptozotocin-diabetic male Wistar rats. Insulin levels in the tear film rose after glucose stimulation in diabetic rats, but remained unchanged in the blood. Ex vivo static secretion assays demonstrated that higher glucose and 200 microM carbachol significantly increased mean insulin levels from LG samples of both groups. Insulin and C-peptide were expressed in LG of diabetic rats as determined by RIA. Comparable synaptophysin immune staining and peroxidase activity in the LG of both groups suggest that the structure and function of these tissues were maintained. These findings provide evidence of insulin production by LG. Higher expression of reactive oxygen species scavengers may prevent oxidative damage to LG compared to pancreatic beta-cells.  相似文献   

2.
Previous work has revealed that insulin is secreted in the tear film; its mRNA is expressed in the lachrymal gland (LG) and its receptor in tissues of the ocular surface. To test the hypothesis of insulin production in the LG, we compared normal and diabetic rats for: (1) the presence of insulin and C-peptide, (2) glucose- and carbachol-induced insulin secretion ex-vivo, and (3) biochemical and histological characteristics of diabetic LG that would support this possibility. Four weeks after streptozotocin injection, blood and tears were collected from streptozotocin-diabetic male Wistar rats. Insulin levels in the tear film rose after glucose stimulation in diabetic rats, but remained unchanged in the blood. Ex vivo static secretion assays demonstrated that higher glucose and 200 μM carbachol significantly increased mean insulin levels from LG samples of both groups. Insulin and C-peptide were expressed in LG of diabetic rats as determined by RIA. Comparable synaptophysin immune staining and peroxidase activity in the LG of both groups suggest that the structure and function of these tissues were maintained. These findings provide evidence of insulin production by LG. Higher expression of reactive oxygen species scavengers may prevent oxidative damage to LG compared to pancreatic beta-cells.  相似文献   

3.
4.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

5.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

6.
The present study was undertaken to establish in normal volunteers the alterations in beta-cell responsiveness to glucose associated with a constant infusion of glucagon-like peptide-1 (GLP-1) or a pretreatment infusion for 60 min. A high-dose graded glucose infusion protocol was used to explore the dose-response relationship between glucose and insulin secretion. Studies were performed in 10 normal volunteers, and insulin secretion rates (ISR) were calculated by deconvolution of peripheral C-peptide levels by use of a two-compartmental model that utilized mean kinetic parameters. During the saline study, from 5 to 15 mM glucose, the relationship between glucose and ISR was linear. Constant GLP-1 infusion (0.4 pmol x kg(-1) x min(-1)) shifted the dose-response curve to the left, with an increase in the slope of this curve from 5 to 9 mM glucose from 71.0 +/- 12.4 pmol x min(-1) x mM(-1) during the saline study to 241.7 +/- 36.6 pmol x min(-1) x mM(-1) during the constant GLP-1 infusion (P < 0.0001). GLP-1 consistently stimulated a >200% increase in ISR at each 1 mM glucose interval, maintaining plasma glucose at <10 mM (P < 0.0007). Pretreatment with GLP-1 for 60 min resulted in no significant priming of the beta-cell response to glucose (P = 0.2). Insulin clearance rates were similar in all three studies at corresponding insulin levels. These studies demonstrate that physiological levels of GLP-1 stimulate glucose-induced insulin secretion in a linear manner, with a consistent increase in ISR at each 1 mM glucose interval, and that they have no independent effect on insulin clearance and no priming effect on subsequent insulin secretory response to glucose.  相似文献   

7.
The changes in glycogen content and in its rate of synthesis in two-day-old primary cultures of rat hepatocytes were assessed under various conditions. Hepatocytes cultivated in serum-free and hormone-free medium switch from glycogen degradation to glycogen deposition at 10.3 mM glucose. After pretreatment of the cells with glucocorticoids this threshold was reduced, in the absence or presence of insulin, to 5.4 or 1.2 mM glucose, respectively. The rate of glycogen synthesis in the presence of 10 mM glucose was amplified from 5 nmol x h-1 x mg protein-1 to 20 nmol glucose x h-1 x mg protein-1 after pretreatment with triamcinolone. Glucagon pretreatment also significantly increased the subsequent glycogen synthesis rate. Insulin addition accelerated glycogen synthesis about twofold regardless of the pretreatment. The dose-response relationship between insulin concentration and glycogen synthesis rate showed half-maximal effect at 0.62 +/- 0.22 nM (mean +/- S.D.) insulin. Pretreatment of hepatocytes with glucocorticoids, glucagon, insulin or combinations of these hormones did not significantly change the concentration which gives the half-maximal effect.  相似文献   

8.
9.
The mechanisms for the effect of hyperglycemia on insulin-induced mitogenesis were investigated using rat vascular smooth muscle cells (VSMC). VSMC were preincubated in serum-free medium with low (5 mM) glucose (LG condition) or high (25 mM) glucose (HG condition), and examined for DNA synthesis using bromodeoxyuridine (BrdUrd) incorporation. Mitogen-activated protein kinase (MAPK) activity and MAPK phosphatase (MKP-1) protein expression were detected by Western blot analysis. Phosphatidylinositol 3-kinase (PI-3K) activity was detected by thin layer chromatography. Insulin induced a dose-dependent increase in BrdUrd incorporation (123.3+/-2.6% over basal level with 1 microM insulin) in the LG group and this effect was significantly enhanced (161.6+/-10.4% over basal level) in the HG group. In the LG group, MAPK activity was transient with a peak activation (137.4+/-11.2% over basal level) after 10 min exposure to 100 nM insulin. In the HG group, the MAPK activity was significantly potentiated (two-fold compared to the LG group) and was sustained even after 60 min. Insulin also induced PI-3K activity and MKP-1 expression, both of which were blocked by the PI-3K inhibitor wortmannin. In the HG group, insulin-induced PI-3K and MKP-1 expression was almost abolished. In conclusion, high glucose enhances insulin-induced mitogenesis associated with the potentiation of insulin-stimulated MAPK activity in VSMC. These effects of glucose might in part be due to the attenuation of MKP-1 expression through the blockage of the insulin-PI-3K signal pathway.  相似文献   

10.
Kinetic characteristics of glucose transport and glucose phosphorylation were studied in the islet cell line beta TC-1 to explore the roles of these processes in determining the dependence of glucose metabolism and insulin secretion on external glucose. The predominant glucose transporter present was the rat brain/erythrocyte type (Glut1), as determined by RNA and immunoblot analysis. The liver/islet glucose transporter (Glut2) RNA was not detected. The functional parameters of zero-trans glucose entry were Km = 9.5 +/- 2 mM and Vmax = 15.2 +/- 2 nmol min-1 (microL of cell water)-1. Phosphorylation kinetics of two hexokinase activities were characterized in situ. A low-Km (0.036 mM) hexokinase with a Vmax of 0.40 nmol min-1 (microL of cell water)-1 was present along with a high-Km (10 mM) hexokinase, which appeared to conform to a cooperative model with a Hill coefficient of about 1.4 and a Vmax of 0.3 nmol min-1 (microL of cell water)-1. Intracellular glucose at steady state was about 80% of the extracellular glucose from 3 to 15 mM, and transport did not limit metabolism in this range. In this static (nonperifusion) system, 2-3 times more immunoreactive insulin was secreted into the medium at 15 mM glucose than at 3 mM. The dependence of insulin secretion on external glucose roughly paralleled the dependence of glucose metabolism on external glucose. Simulations with a model demonstrated the degree to which changes in transport activity would affect intracellular glucose levels and the rate of the high-Km hexokinase (with the potential to affect insulin release).  相似文献   

11.
Insulin is largely secreted as serial secretory bursts superimposed on basal release, insulin secretion is regulated through changes of pulse mass and frequency, and the insulin release pattern affects insulin action. Coordinate insulin release is preserved in the isolated perfused pancreas, suggesting intrapancreatic coordination. However, occurrence of glucose concentration oscillations may influence the process in vivo, as it does for ultradian oscillations. To determine if rapid pulsatile insulin release may be induced by minimal glucose infusions and to define the necessary glucose quantity, we studied six healthy individuals during brief repetitive glucose infusions of 6 and 2 mg x kg(-1) x min(-1) for 1 min every 10 min. The higher dose completely synchronized pulsatile insulin release at modest plasma glucose changes ( approximately 0.3 mM = approximately 5%), with large ( approximately 100%) amplitude insulin pulses at every single glucose induction (n = 54) at a lag time of 2 min (P < 0.05), compared with small (10%) and rare (n = 3) uninduced insulin excursions. The smaller glucose dose induced insulin pulses at lower significance levels and with considerable breakthrough insulin release. Periodicity shift from either 7- to 12-min or from 12- to 7-min intervals between consecutive glucose (6 mg x kg(-1) x min(-1)) infusions in six volunteers revealed rapid frequency changes. The orderliness of insulin release as estimated by approximate entropy (1.459 +/- 0.009 vs. 1.549 +/- 0.027, P = 0.016) was significantly improved by glucose pulse induction (n = 6; 6 mg x kg(-1) x min(-1)) compared with unstimulated insulin profiles (n = 7). We conclude that rapid in vivo oscillations in glucose may be an important regulator of pulsatile insulin secretion in humans and that the use of an intermittent pulsed glucose induction to evoke defined and recurrent insulin secretory signals may be a useful tool to unveil more subtle defects in beta-cell glucose sensitivity.  相似文献   

12.
Glucagon-like peptide-1 (GLP-1) plays a significant role in glucose homeostasis through its incretin effect on insulin secretion. However, GLP-1 also exhibits extrapancreatic actions, and in particular its possible influences on insulin sensitivity are controversial. To study the dynamic action of GLP-1 on insulin sensitivity, we applied advanced statistical modeling methods to study glucose disappearance in mice that underwent intravenous glucose tolerance test with administration of GLP-1 at various dose levels. In particular, the minimal model of glucose disappearance was exploited within a population estimation framework for accurate detection of relationships between glucose disappearance parameters and GLP-1. Minimal model parameters were estimated from glucose and insulin data collected in 209 anesthetized normal mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). Insulin secretion markedly increased, as expected, with increasing GLP-1 dose. However, minimal model-derived indexes, i.e., insulin sensitivity and glucose effectiveness, did not significantly change with GLP-1 dose. Instead, fractional turnover rate of insulin action [P2 = 0.0207 +/- 24.3% (min) at zero GLP-1 dose] increased steadily with administered GLP-1 dose, with significant differences at 10.4 nmol/kg (P2 = 0.040 +/- 15.5%, P = 0.0046) and 31.2 nmol/kg (P2 = 0.050 +/- 29.2%, P = 0.01). These results show that GLP-1 influences the dynamics of insulin action by accelerating insulin action following glucose challenge. This is a novel mechanism contributing to the glucose-lowering action of GLP-1.  相似文献   

13.
Insulin resistance, impaired insulin secretion, and low adiponectin levels have been shown to be predictors for type 2 diabetes. However, it is not yet clear whether these associations (1) are independent of changes in body weight, or (2) are valid for changes in glucose tolerance in the prediabetic state. Sixty-two non-diabetics (50 with normal glucose tolerance) aged 41 +/- 11 years, BMI 30.5 +/- 5.3 kg/m2 (mean +/- SD) were studied twice with a standard oral glucose tolerance test (oGTT, mean follow-up time 3.0 +/- 1.8 years (mean +/- SD) [range 0.5-6.5 years]). Insulin sensitivity and insulin secretion were estimated from oGTT using validated indices. Two-hour blood glucose during oGTT deteriorated over time (baseline 2 h glucose 6.32 +/- 0.21 VS. follow-up 2 h glucose 7.14 +/- 0.22 mM, p < 0.001) while the percentage body fat did not change (32.7 +/- 1.2 VS. 32.6 +/- 1.2%, p = 0.46). Follow-up 2 h blood glucose was predicted by adiponectin (p = 0.01), baseline insulin sensitivity (p = 0.02) and baseline insulin secretion relative to insulin sensitivity (p = 0.03) independent of sex, age, baseline 2 h blood glucose or change in percentage body fat. Our results suggest that low adiponectin levels, insulin resistance and low beta cell function predict the continuous deterioration of glucose tolerance in early prediabetic states, independent of changes in adiposity. Therefore, the early influence of these parameters should be the subject of future prevention programs to prevent deterioration of glucose tolerance.  相似文献   

14.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

15.
We tested the hypothesis that hepatic nitric oxide (NO) and glutathione (GSH) are involved in the synthesis of a putative hormone referred to as hepatic insulin-sensitizing substance HISS. Insulin action was assessed in Wistar rats using the rapid insulin sensitivity test (RIST). Blockade of hepatic NO synthesis with N(G)-nitro-l-arginine methyl ester (l-NAME, 1.0 mg/kg intraportal) decreased insulin sensitivity by 45.1 +/- 2.1% compared with control (from 287.3 +/- 18.1 to 155.3 +/- 10.1 mg glucose/kg, P < 0.05). Insulin sensitivity was restored to 321.7 +/- 44.7 mg glucose/kg after administration of an NO donor, intraportal SIN-1 (5 mg/kg), which promotes GSH nitrosation, but not after intraportal sodium nitroprusside (20 nmol x kg(-1) x min(-1)), which does not nitrosate GSH. We depleted hepatic GSH using the GSH synthesis inhibitor l-buthionine-[S,R]-sulfoximine (BSO, 2 mmol/kg body wt ip for 20 days), which reduced insulin sensitivity by 39.1%. Insulin sensitivity after l-NAME was not significantly different between BSO- and sham-treated animals. SIN-1 did not reverse the insulin resistance induced by l-NAME in the BSO-treated group. These results support our hypothesis that NO and GSH are essential for insulin action.  相似文献   

16.
We have investigated the mechanism by which high concentrations of glucose inhibit insulin stimulation of glycogen synthase. In NIH-3T3-L1 adipocytes cultured in low glucose (LG; 2.5 mm), the half-maximal activation concentration (A(0.5)) of glucose 6-phosphate was 162 +/- 15 microm. Exposure to either high glucose (HG; 20 mm) or glucosamine (GlcN; 10 mm) increased the A(0.5) to 558 +/- 61 or 612 +/- 34 microm. Insulin treatment with LG reduced the A(0.5) to 96 +/- 10 microm, but cells cultured with HG or GlcN were insulin-resistant (A(0.5) = 287 +/- 27 or 561 +/- 77 microm). Insulin resistance was not explained by increased phosphorylation of synthase. In fact, culture with GlcN decreased phosphorylation to 61% of the levels seen in cells cultured in LG. Hexosamine flux and subsequent enzymatic protein O-glycosylation have been postulated to mediate nutrient sensing and insulin resistance. Glycogen synthase is modified by O-linked N-acetylglucosamine, and the level of glycosylation increased in cells treated with HG or GlcN. Treatment of synthase in vitro with protein phosphatase 1 increased basal synthase activity from cells cultured in LG to 54% of total activity but was less effective with synthase from cells cultured in HG or GlcN, increasing basal activity to only 13 or 16%. After enzymatic removal of O-GlcNAc, however, subsequent digestion with phosphatase increased basal activity to over 73% for LG, HG, and GlcN. We conclude that O-GlcNAc modification of glycogen synthase results in the retention of the enzyme in a glucose 6-phosphate-dependent state and contributes to the reduced activation of the enzyme in insulin resistance.  相似文献   

17.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

18.
Myocardial glucose oxidation is markedly reduced in the uncontrolled diabetic. We determined whether this was due to direct biochemical changes in the heart or whether this was due to altered circulating levels of insulin and substrates that can be seen in the diabetic. Isolated working hearts from control or diabetic rats (streptozotocin, 55 mg/kg iv administered 6 wk before study) were aerobically perfused with either 5 mM [(14)C]glucose and 0.4 mM [(3)H]palmitate (low-fat/low-glucose buffer) or 20 mM [(14)C]glucose and 1.2 mM [(3)H]palmitate (high-fat/high-glucose buffer) +/-100 microU/ml insulin. The presence of insulin increased glucose oxidation in control hearts perfused with low-fat/low-glucose buffer from 553 +/- 85 to 1,150 +/- 147 nmol x g dry wt(-1) x min(-1) (P < 0. 05). If control hearts were perfused with high-fat/high-glucose buffer, palmitate oxidation was significantly increased by 112% (P < 0.05), but glucose oxidation decreased to 55% of values seen in the low-fat/low-glucose group (P < 0.05). In diabetic hearts, glucose oxidation was very low in hearts perfused with low-fat/low-glucose buffer (9 +/- 1 nmol x g dry wt(-1) x min(-1)) and was not altered by insulin or high-fat/high-glucose buffer. These results suggest that neither circulating levels of substrates nor insulin was responsible for the reduced glucose oxidation in diabetic hearts. To determine if subcellular changes in the control of fatty acid oxidation contribute to these changes, we measured the activity of three enzymes involved in the control of fatty acid oxidation; AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and malonyl-CoA decarboxylase (MCD). Although AMPK and ACC activity in control and diabetic hearts was not different, MCD activity and expression in all diabetic rat heart perfusion groups were significantly higher than that seen in corresponding control hearts. These results suggest that an increased MCD activity contributes to the high fatty acid oxidation rates and reduced glucose oxidation rates seen in diabetic rat hearts.  相似文献   

19.
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.  相似文献   

20.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号