共查询到20条相似文献,搜索用时 15 毫秒
1.
Human polymorphonuclear leukocytes (PMNs) are the first line of defense against invading microorganisms. Although most invading bacteria are eliminated by PMNs, some have evolved complex strategies to prevent normal PMN function. This review focuses on the interaction of human PMNs with Streptococcus pyogenes as a paradigm for successful pathogen evasion mechanisms. 相似文献
2.
Many microbial pathogens co‐opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell–cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll‐like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host. 相似文献
3.
Anti-immunology: evasion of the host immune system by bacterial and viral pathogens 总被引:20,自引:0,他引:20
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses. 相似文献
4.
5.
The human immune system has developed an elaborate network of cascades for dealing with microbial intruders. Owing to its ability to rapidly recognize and eliminate microorganisms, the complement system is an essential and efficient component of this machinery. However, many pathogenic organisms have found ways to escape the attack of complement through a range of different mechanisms. Recent discoveries in this field have provided important insights into these processes on a molecular level. These vital developments could augment our knowledge of the pathology and treatment of infectious and inflammatory diseases. 相似文献
6.
Bjarnsholt T Givskov M 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1483):1213-1222
Conventional antibiotics target the growth and the basal life processes of bacteria leading to growth arrest and cell death. The selective force that is inherently linked to this mode of action eventually selects out antibiotic-resistant variants. The most obvious alternative to antibiotic-mediated killing or growth inhibition would be to attenuate the bacteria with respect to pathogenicity. The realization that Pseudomonas aeruginosa, and a number of other pathogens, controls much of their virulence arsenal by means of extracellular signal molecules in a process denoted quorum sensing (QS) gave rise to a new 'drug target rush'. Recently, QS has been shown to be involved in the development of tolerance to various antimicrobial treatments and immune modulation. The regulation of virulence via QS confers a strategic advantage over host defences. Consequently, a drug capable of blocking QS is likely to increase the susceptibility of the infecting organism to host defences and its clearance from the host. The use of QS signal blockers to attenuate bacterial pathogenicity, rather than bacterial growth, is therefore highly attractive, particularly with respect to the emergence of multi-antibiotic resistant bacteria. 相似文献
8.
Damatta RA Seabra SH Deolindo P Arnholdt AC Manhães L Goldenberg S de Souza W 《FEMS microbiology letters》2007,266(1):29-33
Chagas disease is caused by Trypanosoma cruzi and affects 18 million people in Central and South America. Here we analyzed the exposure of phosphatidylserine by the different forms of the parasite life cycle. Only the infective trypomastigotes, but not the epimastigotes or intracellular amastigotes, expose this phospholipid. This triggers a transforming growth factor beta signaling pathway, based on phosphorylated Smad 2 nuclear translocation, leading to iNOS disappearance in infected macrophages. This macrophage deactivation favors the survival of this intracellular parasite. Thus, phosphatidylserine exposure may be used by T. cruzi to evade innate immunity and be a common feature of obligate intracellular parasites that have to deal with activated macrophages. 相似文献
9.
Shames SR Auweter SD Finlay BB 《The international journal of biochemistry & cell biology》2009,41(2):380-389
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in quantum leaps via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens. 相似文献
10.
The incidence of life-threatening fungal infections has continued to increase in recent years, predominantly in patients debilitated by iatrogenic interventions or immunological dysfunctions. While the picture of the immunology of fungal infections grows increasingly complex, it is clear that the phagocyte-pathogen interaction is a critical determinant of establishing an infection. About 10 years ago, genome-scale approaches began to elucidate the intricate and extensive fungal response to phagocytosis and in the last few years it has become clear that some of this response actively modulates immune cell function. Fungal pathogens avoid detection by masking pathogen-associated molecular patterns, such as cell wall carbohydrates, and by downregulating the complement cascade. Once detected, various species interfere with phagocytosis and intracellular trafficking, and can repress production of antimicrobials like nitric oxide (NO). For the most part, the molecular mechanisms behind these behaviors are not yet known. This review discusses recent discoveries and insights into how fungi manipulate the host-pathogen interaction. 相似文献
11.
De Sousa R Lopes de Carvalho I Santos AS Bernardes C Milhano N Jesus J Menezes D Núncio MS 《Applied and environmental microbiology》2012,78(10):3767-3769
PCR screening of ticks and tissue samples collected from 151 Teira dugesii lizards seems to indicate a potential role of this lizard species in the maintenance and transmission cycle of some Ixodes ricinus tick-borne agents, such as Rickettsia monacensis, Rickettsia helvetica, and Borrelia lusitaniae, that are circulating on Madeira Island. 相似文献
12.
13.
Living systems have evolved remarkable molecular functions that can be redesigned for in vivo chemical synthesis as we gain a deeper understanding of the underlying biochemical principles for de novo construction of synthetic pathways. We have focused on developing pathways for next-generation biofuels as they require carbon to be channeled to product at quantitative yields. However, these fatty acid-inspired pathways must manage the highly reversible nature of the enzyme components. For targets in the biodiesel range, the equilibrium can be driven to completion by physical sequestration of an insoluble product, which is a mechanism unavailable to soluble gasoline-sized products. In this work, we report the construction of a chimeric pathway assembled from three different organisms for the high-level production of n-butanol (4,650 ± 720 mg l?1) that uses an enzymatic chemical reaction mechanism in place of a physical step as a kinetic control element to achieve high yields from glucose (28%). 相似文献
14.
Abstract The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host. 相似文献
15.
16.
Numerous bacterial pathogens “confine” themselves within host cells with an intracellular localization as main or exclusive niche. Many of them switch dynamically between a membrane-bound or cytosolic lifestyle. This requires either membrane damage and/or repair of the bacterial-containing compartment. Niche switching has profound consequences on how the host cell recognizes the pathogens in time and space for elimination. Moreover, niche switching impacts how bacteria communicate with host cells to obtain nutrients, and it affects the accessibility to antibiotics. Understanding the local environments and cellular phenotypes that lead to niche switching is critical for developing new host-targeted antimicrobial strategies, and has the potential to shed light into fundamental cellular processes. 相似文献
17.
Li H Matte-Martone C Tan HS Venkatesan S McNiff J Demetris AJ Jain D Lakkis F Rothstein D Shlomchik WD 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(1):230-241
Graft-versus-host disease (GVHD) is initiated by APCs that prime alloreactive donor T cells. In antipathogen responses, Ag-bearing APCs receive signals through pattern-recognition receptors, including TLRs, which induce the expression of costimulatory molecules and production of inflammatory cytokines, which in turn mold the adaptive T cell response. However, in allogeneic hematopoietic stem cell transplantation (alloSCT), there is no specific pathogen, alloantigen is ubiquitous, and signals that induce APC maturation are undefined. To investigate APC activation in GVHD, we used recipient mice with hematopoietic cells genetically deficient in pathways critical for APC maturation in models in which host APCs are absolutely required. Strikingly, CD8-mediated and CD4-mediated GVHD were similar whether host APCs were wild-type or deficient in MyD88, TRIF, or MyD88 and TRIF, which excludes essential roles for TLRs and IL-1β, the key product of inflammasome activation. Th1 differentiation was if anything augmented when APCs were MyD88/TRIF(-/-), and T cell production of IFN-γ did not require host IL-12. GVHD was also intact when APCs lacked the type I IFNR, which amplifies APC activation pathways that induce type I IFNs. Thus in GVHD, alloreactive T cells can be activated when pathways critical for antipathogen T cell responses are impaired. 相似文献
18.
Cestari I Ansa-Addo E Deolindo P Inal JM Ramirez MI 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(4):1942-1952
The innate immune system is the first mechanism of vertebrate defense against pathogen infection. In this study, we present evidence for a novel immune evasion mechanism of Trypanosoma cruzi, mediated by host cell plasma membrane-derived vesicles. We found that T. cruzi metacyclic trypomastigotes induced microvesicle release from blood cells early in infection. Upon their release, microvesicles formed a complex on the T. cruzi surface with the complement C3 convertase, leading to its stabilization and inhibition, and ultimately resulting in increased parasite survival. Furthermore, we found that TGF-β-bearing microvesicles released from monocytes and lymphocytes promoted rapid cell invasion by T. cruzi, which also contributed to parasites escaping the complement attack. In addition, in vivo infection with T. cruzi showed a rapid increase of microvesicle levels in mouse plasma, and infection with exogenous microvesicles resulted in increased T. cruzi parasitemia. Altogether, these data support a role for microvesicles contributing to T. cruzi evasion of innate immunity. 相似文献
19.
Dendritic cells (DCs) are crucial in the defence against pathogens. Invading pathogens are recognized by Toll-like receptors (TLRs) and receptors such as C-type lectins expressed on the surface of DCs. However, it is becoming evident that some pathogens, including viruses, such as HIV-1, and non-viral pathogens, such as Mycobacterium tuberculosis, subvert DC functions to escape immune surveillance by targeting the C-type lectin DC-SIGN (DC-specific intercellular adhesion molecule-grabbing nonintegrin). Notably, these pathogens misuse DC-SIGN by distinct mechanisms that either circumvent antigen processing or alter TLR-mediated signalling, skewing T-cell responses. This implies that adaptation of pathogens to target DC-SIGN might support pathogen survival. 相似文献
20.
Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. 总被引:5,自引:0,他引:5
Matthias Engele Elmar St?ssel Kirstin Castiglione Nives Schwerdtner Manfred Wagner Pal B?lcskei Martin R?llinghoff Steffen Stenger 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(3):1328-1337
The ability of macrophages to release cytokines is crucial to the host response to intracellular infection. In particular, macrophage-derived TNF plays an important role in the host response to infection with the intracellular pathogen Mycobacterium tuberculosis. In mice, TNF is indispensable for the formation of tuberculous granulomas, which serve to demarcate the virulent bacterium. TNF is also implicated in many of the immunopathological features of tuberculosis. To investigate the role of TNF in the local immune response, we infected human alveolar macrophages with virulent and attenuated mycobacteria. Infection with virulent strains induced the secretion of significantly higher levels of bioactive TNF than attenuated strains correlating with their ability to multiply intracellularly. Treatment of infected macrophages with neutralizing anti-TNF Abs reduced the growth rate of intracellular bacteria, whereas bacterial replication was augmented by addition of exogenous TNF. Infected and uninfected macrophages contributed to cytokine production as determined by double-staining of M. tuberculosis and intracellular TNF. The induction of TNF by human alveolar macrophages at the site of infection permits the multiplication of intracellular bacteria and may therefore present an evasion mechanism of human pathogens. 相似文献