首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.  相似文献   

2.
3.
Growth hormone (GH) is secreted in the anterior pituitary gland by the somatotroph cells. Secretion is regulated by growth hormone releasing hormone (GHRH) and somatostatin. Morever, GH secretagogues (GHS) can exert a considerable effect on GH secretion. In order to determine the effects of chronic treatment with the GHS Ipamorelin on the composition of the somatotroph cell population and on somatotroph GH content, an in vitro analysis was performed of the percentage of somatotroph cells (% of total), the ratio of different GH cell types (strongly/weakly-staining) and individual GH content, in pituitary cell cultures obtained from young female rats receiving Ipamorelin over 21 days (Ipamorelin group) and the effects were compared with those of GHRH (GHRH group) or saline (saline group). The ultrastructure of somatotroph cells did not change, but the volume density of secretion granules was increased (P<0.05) by previous in vivo Ipamorelin or GHRH treatment. In 3-day basal pituitary cell monolayer cultures, the percentage of somatotroph cells showed no modifications between groups, nor was there any change in the ratio of strongly/weakly immunostaining GH cells. In the Ipamorelin group alone, in vitro treatment with Ipamorelin (10(-8) M), or GHRP 6 (10(-8) M), or GHRH (10(-8) M) for 4 hours, increased the percentage of somatotroph cells, without modifying the ratio of strongly/weakly immunostained GH cells. Basal intracellular GH content in somatotroph cells over 4 hours was lower in the Ipamorelin group and the GHRH group than in the saline group. Only in the Ipamorelin group did Ipamorelin (10(-8) M), GHRP 6 (10(-8) M) and GHRH (10(-8) M) prompt increased intracellular GH content. These data suggest that, at least in the young female rat, the GHS Ipamorelin is able to exert a dynamic control effect on the somatotroph population and on GH hormone content.  相似文献   

4.
R F Walker  S W Yang  B B Bercu 《Life sciences》1991,49(20):1499-1504
Aging is associated with a blunted growth hormone (GH) secretory response to GH-releasing hormone (GHRH), in vivo. The objective of the present study was to assess the effects of aging on the GH secretory response to GH-releasing hexapeptide (GHRP-6), a synthetic GH secretagogue. GHRP-6 (30 micrograms/kg) was administered alone or in combination with GHRH (2 micrograms/kg) to anesthetized female Fischer 344 rats, 3 or 19 months of age. The peptides were co-administered to determine the effect of aging upon the potentiating effect of GHRP-6 on GHRH activity. The increase in plasma GH as a function of time following administration of GHRP-6 was lower (p less than 0.001) in old rats than in young rats; whereas the increase in plasma GH secretion as a function of time following co-administration of GHRP-6 and GHRH was higher (p less than 0.001) in old rats than in young rats (mean Cmax = 8539 +/- 790.6 micrograms/l vs. 2970 +/- 866 micrograms/l, respectively; p less than 0.01). Since pituitary GH concentrations in old rats were lower than in young rats (257.0 +/- 59.8 micrograms/mg wet wt. vs. 639.7 +/- 149.2 micrograms/mg wet wt., respectively; p less than 0.03), the results suggested that GH functional reserve in old female rats was not linked to pituitary GH concentration. The differential responses of old rats to individually administered and co-administered GHRP-6 are important because they demonstrate that robust and immediate GH secretion can occur in old rats that are appropriately stimulated. The data further suggest that the cellular processes subserving GH secretion are intact in old rats, and that age-related decrements in GH secretion result from inadequate stimulation, rather than to maladaptive changes in the mechanism of GH release.  相似文献   

5.
Models of physiological systems facilitate rational experimental design, inference, and prediction. A recent construct of regulated growth hormone (GH) secretion interlinks the actions of GH-releasing hormone (GHRH), somatostatin (SRIF), and GH secretagogues (GHS) with GH feedback in the rat (Farhy LS, Veldhuis JD. Am J Physiol Regul Integr Comp Physiol 288: R1649-R1663, 2005). In contrast, no comparable formalism exists to explicate GH dynamics in any other species. The present analyses explore whether a unifying model structure can represent species- and sex-defined distinctions in the human and rodent. The consensus principle that GHRH and GHS synergize in vivo but not in vitro was explicable by assuming that GHS 1) evokes GHRH release from the brain, 2) opposes inhibition by SRIF both in the hypothalamus and on the pituitary gland, and 3) stimulates pituitary GH release directly and additively with GHRH. The gender-selective principle that GH pulses are larger and more irregular in women than men was conferrable by way of 4) higher GHRH potency and 5) greater GHS efficacy. The overall construct predicts GHRH/GHS synergy in the human only in the presence of SRIF when the brain-pituitary nexus is intact, larger and more irregular GH pulses in women, and observed gender differences in feedback by GH and the single and paired actions of GHRH, GHS, and SRIF. The proposed model platform should enhance the framing and interpretation of novel clinical hypotheses and create a basis for interspecies generalization of GH-axis regulation.  相似文献   

6.
Because estrogen production and age are strong covariates, distinguishing their individual impact on hypothalamo-pituitary regulation of growth hormone (GH) output is difficult. In addition, at fixed elimination kinetics, systemic GH concentration patterns are controlled by three major signal types [GH-releasing hormone (GHRH), GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS)] and by four dynamic mechanisms [the number, mass (size), and shape (waveform) of secretory bursts and basal (time invariant) GH secretion]. The present study introduces an investigative strategy comprising 1) imposition of an experimental estradiol clamp in pre- (PRE) and postmenopausal (POST) women; 2) stimulation of fasting GH secretion by each of GHRH, GHRP-2 (a ghrelin analog), and l-arginine (to putatively limit SSergic restraint); and 3) implementation of a flexible-waveform deconvolution model to estimate basal GH secretion simultaneously with the size and shape of secretory bursts, conditional on pulse number. The combined approach unveiled the following salient percent POST/PRE contrasts: 1) only 27% as much GH secreted in bursts during fasting (P < 0.001); 2) markedly attenuated burstlike GH secretion in response to bolus GHRP-2 (29%), bolus GHRH (30%), l-arginine (37%), constant GHRP-2 (38%), and constant GHRH (42%) (age contrasts, 0.0016 相似文献   

7.
Diagnostic confirmation of growth hormone (GH) deficiency in children and adults is based on stimulation tests designed to assess the pituitary reserve by measuring the amount of GH released into the bloodstream; however, the results obtained by this means cannot provide any direct indication of the amount of GH actually produced by pituitary somatotroph cells. The present paper sought to test the hypothesis that release of GH following administration of specific stimuli does not accurately reflect the somatotroph cell response, and that the amount of GH released into the bloodstream may often be greater or smaller than the amount synthesized. GH release and changes in the proportion of somatotroph cells were charted in prepuberal female Wistar rats, following administration of several different GH stimuli: GHRH (1 microg/kg), GHRP-6 (1 microg/kg), GHRELIN (1 microg/kg) and combined GHRH-based treatments, with or without SRIH pretreatment (1 microg/kg) 90 minutes earlier. Peak serum GH values were recorded 15 minutes after administration of GHRH+GHRELIN and GHRH+GHRP-6; maximum stimulation in terms of an increased proportion of somatotroph cells occurred 15 minutes after combined adminstration of GHRH + GHRELIN. SRIH pretreatment (- 90 min) inhibited GH release, with a subsequent "escape" and lack of response to stimulation which lasted at least 30 minutes except following administration of GHRH. However, combined administration of GHRH+GHRELIN maintained stimulation of the somatotroph cell population. In conclusion, the results suggest that the enhanced GH release prompted by stimulation tests used to diagnose GH deficiency in prepuberal female rats does not fully reflect somatroph cell dynamics, and that not all the GH produced and stored by somatotroph cells is released into the bloodstream.  相似文献   

8.
Growth hormone (GH)-releasing peptides (GHRPs) are synthetic peptides which induce strong GH release in both animals and humans. Among them, GHRP-2 is known to stimulate GH release by acting at both hypothalamic and pituitary sites, but also induces adrenocorticotropic hormone (ACTH) release in healthy subjects. GHRP-2 may stimulate ACTH release directly via GHRP receptor type 1a in ACTH-producing tumors. GHRP-2 increases ACTH secretion in rat in vivo, but not ACTH release from rat primary pituitary cells. In the present study, in order to elucidate the mechanism underlying ACTH secretion by GHRPs, mouse pituitary cells were stimulated by GHRP-2. GHRP receptor mRNA was expressed in the mouse pituitary, and GHRP-2 directly stimulated secretion and synthesis of ACTH in the mouse anterior pituitary cells. GHRP-2 increased intracellular cyclic AMP production. H89, a potent protein kinase A (PKA) inhibitor, and bisindolylmaleimide I, a selective protein kinase C (PKC) inhibitor, inhibited the GHRP-2-induced ACTH release, and that H89, but not bisindolylmaleimide I, inhibited the GHRP-2-induced proopiomelanocortin mRNA levels. Together, the GHRP-2-induced ACTH release was regulated via both PKA and PKC pathways in the mouse pituitary cells, while ACTH was synthesized by GHRP-2 only via the PKA pathway.  相似文献   

9.
Growth hormone (GH) releasing hexapeptide (GHRP)-6 and other peptidergic and non-peptidergic compounds collectively designated GH secretagogues (GHS) are potent releasers of GH in man. Their clinical future may be envisioned in three areas: therapy of GH-deficient (GHD) states, diagnosis of GHD, and non-endocrinological actions. As therapeutic agents and compared with GH itself, GHS have the disadvantage of lower potency but have a more physiological and safer profile of GH secretion. GHS administration could be indicated for states in which medium GH doses have been shown to be effective. As a diagnostic tool, the combined administration of GH releasing hormone plus GHRP-6, both at saturating doses, is currently the most powerful releaser of GH, devoid of side effects and convenient for the patient; it may also be an alternative to the insulin tolerance test for the diagnosis of GHD in adult patients. Their potential action at cardiovascular level is highly promising. Although the clinical future of GH releasing substances is appealing, probably the most relevant contribution has yet to be discovered. Once the endogenous ligand of the GHS receptor is identified, we will have an insight into the real hypothalamic control of GH secretion in man. With this knowledge it is likely that some diagnostic and therapeutic actions that are commonly undertaken will significantly change.  相似文献   

10.
It is well established that pituitary somatotropes fire spontaneous action potentials (SAP) which generate Ca(2+) signals of sufficient amplitude to trigger growth hormone (GH) release. It is also known that ghrelin and synthetic GH-releasing peptides (GHRPs) stimulate GH secretion, though the mechanisms involved remain unclear. In the current report, we show that the chronic (96h) treatment with ghrelin and GHRP-6 increases the firing frequency of SAP in the somatotrope GC cell line. This action is associated with a significant increase in whole-cell inward current density. In addition, long-term application of Na(+) or L-type Ca(2+) current antagonists decreases GHRP-6-induced release of GH, indicating that the ionic currents that give rise to SAP play important roles for hormone secretion in the GC cells. Together, our results suggest that ghrelin and GHPR-6 may increase whole-cell inward current density thereby enhancing SAP firing frequency and facilitating GH secretion from GC somatotropes.  相似文献   

11.
Growth hormone (GH) secretagogues (GHS) are synthetic peptidyl and non-peptidyl molecules which possess strong, dose-dependent and reproducible GH releasing effects as well as significant prolactin (PRL) and adrenocorticotropic hormone (ACTH) releasing effects. The neuroendocrine activities of GHS are mediated by specific receptors mainly present at the pituitary and hypothalamic level but also elsewhere in the central nervous system. GHS release GH via actions at the pituitary and (mainly) the hypothalamic level, probably acting on GH releasing hormone (GHRH) secreting neurons and/or as functional somatostatin antagonists. GHS release more GH than GHRH and the coadministration of these peptides has a synergistic effect but these effects need the integrity of the hypothalamo-pituitary unit. The GH releasing effect of GHS is generally gender-independent and undergoes marked age-related variations reflecting age-related changes in the neural control of anterior pituitary function. The PRL releasing activity of GHS probably comes from direct pituitary action, which indeed is slight and independent of both age and gender. The acute stimulatory effect of GHS on ACTH/cortisol secretion is similar to that of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). In physiological conditions, the ACTH releasing activity of GHS is mediated by central mechanisms, at least partially, independent of both CRH and AVP but probably involving GABAergic mechanisms. The ACTH releasing activity of GHS is gender-independent and undergoes peculiar age-related variations showing a trend towards increase in ageing. GHS possess specific receptors also at the peripheral levels in endocrine and non-endocrine human tissues. Cardiac receptors are specific for peptidyl GHS and probably mediate GH-independent cardiotropic activities both in animals and in humans.  相似文献   

12.
Although the majority of children with isolated growth hormone (GH) deficiency have a good growth response to GH-releasing hormone (GHRH), the use of this therapeutic agent is limited by its very short half-life. Indeed, we have shown that, in mice with GHRH gene ablation (GHRH knockout; GHRHKO), even twice-daily injections of a GHRH analog are unable to normalize growth. CJC-1295 is a synthetic GHRH analog that selectively and covalently binds to endogenous albumin after injection, thereby extending its half-life and duration of action. We report the effects of CJC-1295 administration in GHRHKO animals. Three groups of 1-wk-old GHRHKO mice were treated for 5 wk with 2 microg of CJC-1295 at intervals of 24, 48, and 72 h. Placebo-treated GHRHKO mice and mice heterozygous for the GHRHKO allele served as controls. GHRHKO animals receiving daily doses of CJC-1295 exhibited normal body weight and length. Mice treated every 48 and 72 h reached higher body weight and length than placebo-treated animals, without full growth normalization. Femur and tibia length remained normal in animals treated every 24 and 48 h. Relative lean mass and subcutaneous fat mass were normal in all treated groups. CJC-1295 caused an increase in total pituitary RNA and GH mRNA, suggesting that proliferation of somatotroph cells had occurred, as confirmed by immunohistochemistry images. These findings demonstrate that treatment with once-daily administration of CJC-1295 is able to maintain normal body composition and growth in GHRHKO mice. The same dose is less effective when administered every 48 or 72 h.  相似文献   

13.
Growth hormone (GH) secretion is vividly pulsatile in all mammalian species studied. In a simplified model, self-renewable GH pulsatility can be reproduced by assuming individual, reversible, time-delayed, and threshold-sensitive hypothalamic outflow of GH-releasing hormone (GHRH) and GH release-inhibiting hormone (somatostatin; SRIF). However, this basic concept fails to explicate an array of new experimental observations. Accordingly, here we formulate and implement a novel fourfold ensemble construct, wherein 1) systemic GH pulses stimulate long-latency, concentration-dependent secretion of periventricular-nuclear SRIF, thereby initially quenching and then releasing multiphasic GH volleys (recurrent every 3-3.5 h); 2) SRIF delivered to the anterior pituitary gland competitively antagonizes exocytotic release, but not synthesis, of GH during intervolley intervals; 3) arcuate-nucleus GHRH pulses drive the synthesis and accumulation of GH in saturable somatotrope stores; and 4) a purely intrahypothalamic mechanism sustains high-frequency GH pulses (intervals of 30-60 min) within a volley, assuming short-latency reciprocal coupling between GHRH and SRIF neurons (stimulatory direction) and SRIF and GHRH neurons (inhibitory direction). This two-oscillator formulation explicates (but does not prove) 1) the GHRH-sensitizing action of prior SRIF exposure; 2) a three-site (intrahypothalamic, hypothalamo-pituitary, and somatotrope GH store dependent) mechanism driving rebound-like GH secretion after SRIF withdrawal in the male; 3) an obligatory role for pituitary GH stores in representing rebound GH release in the female; 4) greater irregularity of SRIF than GH release profiles; and 5) a basis for the paradoxical GH-inhibiting action of centrally delivered GHRH.  相似文献   

14.
Evidence suggests that estrogen modulates growth hormone (GH) release and that GH plays an important role in follicular and ovulatory processes. How estradiol affects GH secretion is unclear. Having verified that there is a coincident surge of GH at the time of the preovulatory LH surge, immunocytochemical studies incorporating high-temperature antigen retrieval were used to determine whether GH-releasing hormone (GHRH) neurons, somatotropes, or both, expressed estrogen receptor alpha (ER), in the ewe. Although GHRH neurons were surrounded by many ER cells, they did not express immunocytochemically detectable ERs. In contrast to gonadotropes, in which the majority expressed ERs, few somatotropes were estrogen receptive. These data suggest that estrogen does not act directly on GHRH neurons to influence GH secretion, and any direct effect on pituitary GH release, through the ERalpha, may be small.  相似文献   

15.
Growth hormone secretagogues (GHSs) stimulate growth hormone (GH) secretion, which is lipolytic. Here we compared the effects of twice daily s.c. treatment of GH and the GHS, ipamorelin, on body fat in GH-deficient (lit/lit) and in GH-intact (+/lit and +/+) mice. In +/lit and lit/lit mice ipamorelin induced a small (15%) increase in body weight by 2 weeks, that was not further augmented by 9 weeks. GH treatment markedly enhanced body weight in both groups. Ipamorelin also increased fat pad weights relative to body weight in both lit/lit and +/lit mice. Two weeks GHS treatment (ipamorelin or GHRP-6) also increased relative body fat, quantified by in vivo dual energy X-ray absorpiometry (DEXA) in GH-intact mice. GH decreased relative fat mass in lit/lit mice and had no effect in GH-intact mice. Treatment with GHS, but not GH, increased serum leptin and food intake in GH-intact mice. Thus, GHSs increase body fat by GH-independent mechanisms that may include increased feeding.  相似文献   

16.
Heterotrimeric G proteins of the Gq/11 family transduce signals from a variety of neurotransmitter and hormone receptors and have therefore been implicated in various functions of the nervous system. Using the Cre/loxP system, we generated mice which lack the genes coding for the alpha subunits of the two main members of the Gq/11 family, gnaq and gna11, selectively in neuronal and glial precursor cells. Mice with defective gnaq and gna11 genes were morphologically normal, but they died shortly after birth. Mice carrying a single gna11 allele survived the early postnatal period but died within 3 to 6 weeks as anorectic dwarfs. In these mice, postnatal proliferation of pituitary somatotroph cells was strongly impaired, and plasma growth hormone (GH) levels were reduced to 15%. Hypothalamic levels of GH-releasing hormone (GHRH), an important stimulator of somatotroph proliferation, were strongly decreased, and exogenous administration of GHRH restored normal proliferation. The hypothalamic effects of ghrelin, a regulator of GHRH production and food intake, were reduced in these mice, suggesting that an impairment of ghrelin receptor signaling might contribute to GHRH deficiency and abnormal eating behavior. Taken together, our findings show that Gq/11 signaling is required for normal hypothalamic function and that impairment of this signaling pathway causes somatotroph hypoplasia, dwarfism, and anorexia.  相似文献   

17.
In 10-day-old rats made hypothyroid by giving dams propylthiouracil (PTU) in the drinking water since the day of parturition, simultaneous radioimmunoassay (RIA) determinations of basal and stimulated growth hormone (GH) secretion, hypothalamic GH-releasing hormone (GHRH)-like immunoreactivity (LI) content, immunocytochemical localization of somatotrophs, and hypothalamic GHRH-LI-positive structures were performed. The frequency of somatotrophs was also determined. One-day-old hypothyroid rats, whose mothers had been given PTU since the 14th day of pregnancy, were also used for comparison. In 10-day-old hypothyroid rats, pituitary and plasma GH levels and the number of somatotrophs were considerably lower and plasma TSH levels were significantly higher than those in age-matched control rats; however, GHRH-LI titers in the mediobasal hypothalamus and the morphology of GHRH-LI-positive structures were unaltered. In 1-day-old rats the only alteration present, in addition to elevated plasma TSH levels, was a clear-cut decrease in plasma GH levels. An acute challenge with GHRH (20 ng/100 g body wt, sc) or clonidine (15 micrograms/100 g body wt, sc) induced a clear-cut rise in plasma GH levels 15 min postinjection in 10-day-old control rats but failed to do so in age-matched hypothyroid rats. Both compounds failed to rise plasma GH in both hypothyroid and control 1-day-old rats. Taken together these data indicate that in neonatal and infant rats deprivation of thyroid hormones acts primarily to depress pituitary somatotroph function and that possible changes in GHRH-secreting structures represent a later postnatal event.  相似文献   

18.
Ghrelin is a recently discovered stomach hormone that stimulates pituitary growth hormone (GH) secretion potently. The purpose of these experiments was to test the hypothesis that a stomach-ghrelin-pituitary-GH axis exists in which either an elevation or reduction in systemic GH levels will exert a negative or positive feedback action, respectively, on stomach ghrelin homeostasis. In rats, GH administration decreased stomach ghrelin mRNA levels and plasma ghrelin levels significantly. In GH-releasing hormone (GHRH) transgenic mice, GHRH overexpression decreased stomach ghrelin peptide levels when compared with control mice. In aged rats (25 months) stomach ghrelin mRNA and peptide levels and plasma ghrelin levels were decreased when compared with young rats (5 months). Because GH secretion is reduced in aged rats, the elevated stomach ghrelin production and secretion may reflect a decreased GH feedback on stomach ghrelin, homeostasis, and secretion. Together, these findings suggest that endogenous pituitary GH exerts a feedback action on stomach ghrelin homeostasis and support the hypothesis that a stomach-ghrelin-pituitary GH axis exists.  相似文献   

19.
Estradiol (E(2)) drives growth hormone (GH) secretion via estrogen receptors (ER) located in the hypothalamus and pituitary gland. ERalpha is expressed in GH releasing hormone (GHRH) neurons and GH-secreting cells (somatotropes). Moreover, estrogen regulates receptors for somatostatin, GHR peptide (GHRP, ghrelin), and GH itself, while potentiating signaling by IGF-I. Given this complex network, one cannot a priori predict the selective roles of hypothalamic compared with pituitary ER pathways. To make such a distinction, we introduce an investigative model comprising 1) specific ERalpha blockade with a pure antiestrogen, fulvestrant, that does not penetrate the blood-brain barrier; 2) graded transdermal E(2) administration, which doubles GH concentrations in postmenopausal women; 3) stimulation of fasting GH secretion by pairs of GHRH, GHRP-2 (a ghrelin analog), and l-arginine (to putatively limit somatostatin outflow); and 4) implementation of a flexible waveform deconvolution model to estimate the shape of secretory bursts independently of their size. The combined strategy unveiled that 1) E(2) prolongs GH secretory bursts via fulvestrant-antagonizable mechanisms; 2) fulvestrant extends GHRH/GHRP-2-stimulated secretory bursts; 3) l-arginine/GHRP-2 stimulation lengthens GH secretory bursts whether or not E(2) is present; 4) E(2) limits the capability of l-arginine/GHRP-2 to expand GH secretory bursts, and fulvestrant does not inhibit this effect; and 5) E(2) and/or fulvestrant do not alter the time evolution of l-arginine/GHRH-induced GH secretory bursts. The collective data indicate that peripheral ERalpha-dependent mechanisms determine the shape (waveform) of in vivo GH secretory bursts and that such mechanisms operate with secretagogue selectivity.  相似文献   

20.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号