首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All living organisms respond to environmental stresses, such as heat or ethanol by increasing the synthesis of a specific group of proteins termed heat shock proteins (Hsps) or stress proteins. Major Hsps are molecular chaperones and proteases. Molecular chaperones facilitate the proper folding of polypeptides, protect other proteins from inactivation, and reactivate aggregated proteins. Heat shock proteases eliminate proteins irreversibly damaged by stress. This review describes the role of heat shock proteins of the model bacterial cell, E. coli in the protection of other proteins against aggregation and in the mechanism of removal of protein aggregates from the cell. This mechanism remains unclear and it is believed to involve substrate renaturation and proteolysis by molecular chaperones and heat shock proteases. Recently, many studies have been focused on the disaggregation and reactivation of proteins by a bi-chaperone system consisting of DnaK/DnaJ/GrpE and ClpB, an ATPase from the AAA superfamily of proteins.  相似文献   

2.
Heat shock proteins (Hsps) hold a dual role depending on their location. Inside cells, they fulfill essential survival functions as molecular chaperones forming complexes with intracellular polypeptides (self or foreign) to help in protein folding, the resolution of protein aggregates and intracellular protein transport. Released from the cell, they act as messengers communicating the cells’ interior protein composition to the immune system for initiation of immune responses against intracellular proteins. Here we describe the mechanisms by which Hsp70, the heat-inducible Hsp70 family member, crosstalks with the immune system. Further, we discuss that clinical hyperthermia could be a way to initiate the immunologic activity of Hsp70 by upregulating its expression and facilitating release through local necrosis.  相似文献   

3.
Proteins damaged by stressors such as heat, oxidizing conditions or toxic agents are deleterious to cells and must be properly taken care of. Accordingly, misfolded proteins trigger a cellular stress response that aims to either repair defective polypeptides or eliminate faulty elements when salvage is not possible. This stress response provides time for additional stressor-specific pathways that adapt the cell to the changed environment if necessary. Recent studies have investigated how proteins that frustrate the folding machinery are recognized and cleared from the cell. Surprisingly, these clearance mechanisms are not restricted to the protein level. The stress response can also eliminate the mRNA of polypeptides that are refractory to folding.  相似文献   

4.
Accumulating evidence suggests that some heat shock proteins (Hsps), in particular the 72-kDa inducible Hsp70, associate to the cell membrane and might be secreted through an unknown mechanism to exert important functions in the immune response and signal transduction. We speculated that specialized structures named lipid rafts, known as important platforms for the delivery of proteins to the cell membrane, might be involved in the unknown mechanism ensuring membrane association and secretion of Hsp70. Lipid rafts are sphingolipid-cholesterol-rich structures that have been mainly characterized in polarized epithelial cells and can be isolated as detergent-resistant microdomains (DRMs). Analysis of soluble and DRM fractions prepared from unstressed Caco-2 epithelial cells revealed that Hsp70, and to a lesser extent calnexin, were present in DRM fractions. Increased expression of Hsps, through heat shock or by using drugs acting on protein trafficking or intracellular calcium level, induced an efficient translocation to DRM. We also found that Hsp70 was released by epithelial Caco-2 cells, and this release dramatically increased after heat shock. Drugs known to block the classical secretory pathway were unable to reduce Hsp70 release. By contrast, release of the protein was affected by the raft-disrupting drug methyl-beta-cyclodextrin. Our data suggest that lipid rafts are part of a mechanism ensuring the correct functions of Hsps and provide a rational explanation for the observed membrane association and release of Hsp70.  相似文献   

5.
Protein chaperones direct the folding of polypeptides into functional proteins, facilitate developmental signalling and, as heat-shock proteins (HSPs), can be indispensable for survival in unpredictable environments. Recent work shows that the main HSP chaperone families also buffer phenotypic variation. Chaperones can do this either directly through masking the phenotypic effects of mutant polypeptides by allowing their correct folding, or indirectly through buffering the expression of morphogenic variation in threshold traits by regulating signal transduction. Environmentally sensitive chaperone functions in protein folding and signal transduction have different potential consequences for the evolution of populations and lineages under selection in changing environments.  相似文献   

6.
Heat shock proteins (Hsps) can be found in two forms, intracellular and extracellular. The intracellular Hsps are induced as a result of stress and have been found to be cytoprotective in many instances due to their chaperone functions in protein folding and in protein degradation. The origin and role of extracellular Hsps is less clear. Although they were suspected originally to be released from damaged cells (necrosis), their presence in most normal individuals rather suggests that they have regulatory functions in circulation. As immunodominant molecules, Hsps can stimulate the immune system, leading to the production of autoantibodies recognizing epitopes shared by microbial and human Hsps. Thus, extracellular Hsps can influence the inflammatory response as evidenced by the production of inflammatory cytokines. Antibodies to Hsps have been found under normal conditions but seem to be increased in certain stresses and diseases. Such antibodies could regulate the inflammatory response positively or negatively. Here, we review the literature on the findings of antibodies to Hsps in situations of environmental or occupational stress and in a number of diseases and discuss their possible significance for the diagnosis, prognosis, or pathogenesis of these diseases.  相似文献   

7.
Heat shock proteins in toxicology: How close and how far?   总被引:2,自引:0,他引:2  
The response to stress triggers activation of the genes involved in cell survival and/or cell death. Stress response is a ubiquitous feature of cells that is induced under stress conditions. As a part of this response a set of genes called stress genes are induced to synthesize a group of proteins called heat shock proteins (Hsps). The Hsps play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. Because of their sensitivity to even minor assaults, Hsps are suitable as an early warning bio-indicator of cellular hazard. Despite having enormous use in toxicology, the current state of knowledge in defining a mechanism of action or accurately predicting toxicity based on stress gene expression warrants further investigation. The goal of this review is to summarize current developments in the application of stress genes and their products ‘Hsps’ in toxicology with a brief discussion of the caveats. While focusing on hsp70 because of its higher conservation across the taxa and since it is one of the first to be induced under stress conditions, we will also discuss other members of the stress gene family.  相似文献   

8.
Heat shock proteins: molecular chaperones of protein biogenesis.   总被引:47,自引:2,他引:45       下载免费PDF全文
Heat shock proteins (Hsps) were first identified as proteins whose synthesis was enhanced by stresses such as an increase in temperature. Recently, several of the major Hsps have been shown to be intimately involved in protein biogenesis through a direct interaction with a wide variety of proteins. As a reflection of this role, these Hsps have been referred to as molecular chaperones. Hsp70s interact with incompletely folded proteins, such as nascent chains on ribosomes and proteins in the process of translocation from the cytosol into mitochondria and the endoplasmic reticulum. Hsp60 also binds to unfolded proteins, preventing aggregation and facilitating protein folding. Although less well defined, other Hsps such as Hsp90 also play important roles in modulating the activity of a number of proteins. The function of the proteolytic system is intertwined with that of molecular chaperones. Several components of this system, encoded by heat-inducible genes, are responsible for the degradation of abnormal or misfolded proteins. The budding yeast Saccharomyces cerevisiae has proven very useful in the analysis of the role of molecular chaperones in protein maturation, translocation, and degradation. In this review, results of experiments are discussed within the context of experiments with other organisms in an attempt to describe the current state of understanding of these ubiquitous and important proteins.  相似文献   

9.
Heat shock proteins (Hsps) are expressed in mammalian embryonic, adult and aging lens, cornea and retina. These proteins, particularly those belonging to the family of small Hsps, such as αA-crystallin (HspB4) and αB-crystallin (HspB5), play important roles in the differentiation of lens cells and are essential for the maintenance and protection of the supraorganization of proteins in differentiated corneal and lens fiber cells. Hsps are molecular chaperones characterized by their protective activity against different types of stress. They also have anti-apoptotic and anti-oxidant functions that help lens and corneal cells to better cope with the oxidative conditions that result from light induced injuries. They are also effective to protect the retina against the high rate of oxidative metabolism observed in this tissue. The goal of this review is to highlight recent works describing the expression and function(s) of the different Hsps as an attempt to better understand their roles in the normal and pathological eye. Particular emphasis is given to the α-crystallin polypeptides which, in addition to their protective functions, are key structural polypeptides that are essential for the refractive and light focusing properties of the lens, a property demonstrated by the caractogenic potential of their mutation.  相似文献   

10.
Protein folding and diseases   总被引:3,自引:0,他引:3  
For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.  相似文献   

11.
The evolutionary and ecological role of heat shock proteins   总被引:18,自引:0,他引:18  
Most heat shock proteins (Hsp) function as molecular chaperones that help organisms to cope with stress of both an internal and external nature. Here, we review the recent evidence of the relationship between stress resistance and inducible Hsp expression, including a characterization of factors that induce the heat shock response and a discussion of the associated costs. We report on studies of stress resistance including mild stress, effects of high larval densities, inbreeding and age on Hsp expression, as well as on natural variation in the expression of Hsps. The relationship between Hsps and life history traits is discussed with special emphasis on the ecological and evolutionary relevance of Hsps. It is known that up‐regulation of the Hsps is a common cellular response to increased levels of non‐native proteins that facilitates correct protein folding/refolding or degradation of non‐functional proteins. However, we also suggest that the expression level of Hsp in each species and population is a balance between benefits and costs, i.e. a negative impact on growth, development rate and fertility as a result of overexpression of Hsps. To date, investigations have focused primarily on the Hsp70 family. There is evidence that representatives of this Hsp family and other molecular chaperones play significant roles in relation to stress resistance. Future studies including genomic and proteonomic analyses will increase our understanding of molecular chaperones in stress research.  相似文献   

12.
Heat shock genes are the most evolutionarily ancient among the systems responsible for adaptation of organisms to a harsh environment. The encoded proteins (heat shock proteins, Hsps) represent the most important factors of adaptation to adverse environmental conditions. They serve as molecular chaperones, providing protein folding and preventing aggregation of damaged cellular proteins. Structural analysis of the heat shock genes in individuals from both phylogenetically close and very distant taxa made it possible to reveal the basic trends of the heat shock gene organization in the context of adaptation to extreme conditions. Using different model objects and nonmodel species from natural populations, it was demonstrated that modulation of the Hsps expression during adaptation to different environmental conditions could be achieved by changing the number and structural organization of heat shock genes in the genome, as well as the structure of their promoters. It was demonstrated that thermotolerant species were usually characterized by elevated levels of Hsps under normal temperature or by the increase in the synthesis of these proteins in response to heat shock. Analysis of the heat shock genes in phylogenetically distant organisms is of great interest because, on one hand, it contributes to the understanding of the molecular mechanisms of evolution of adaptogenes and, on the other hand, sheds the light on the role of different Hsps families in the development of thermotolerance and the resistance to other stress factors.  相似文献   

13.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B', in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.  相似文献   

14.
Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more "conventional" chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.  相似文献   

15.
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a 'chaperone trap'. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.  相似文献   

16.
A number of acute and chronic neurodegenerative disorders are caused due to misfolding and aggregation of many intra- and extracellular proteins. Protein misfolding and aggregation processes in cells are strongly regulated by cellular molecular chaperones known as heat-shock proteins (Hsps) that include Hsp60, Hsp70, Hsp40, and Hsp90. Recent studies have shown the evidences that Hsps are colocalized in protein aggregates in Alzheimer’s disease (AD), Parkinson’s disease (PD), Polyglutamine disease (PGD), Prion disease, and other neurodegenerative disorders. This fact indicates that Hsps might have attempted to prevent aggregate formation in cells and thus to suppress disease conditions. Experimental findings have already established in many cases that selective overexpression of Hsps like Hsp70 and Hsp40 prevented the disease progression in various animal models and cellular models. However, recently, various Hsp modulators like geldanamycin, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin, and celastrol have shown to up-regulate the expression level of Hsp70 and Hsp40, which in turn triggers the solubilization of diseased protein aggregates. Hsps are, therefore, if appropriately selected, an attractive choice for therapeutic targeting in various kinds of neurodegeneration and hence are expected to have strong potential as therapeutic agents in suppressing or curing AD, PD, PGD, and other devastative neurodegenerative disorders. In the present review, we report the experimental findings that describe the implication of Hsps in the development of neurodegeneration and explore the possibility of how Hsps can be used directly or as a target by other agents to prevent various neurodegeneration through preventing aggregation process and thus reducing the toxicity of the oligomers based on the previous reports.  相似文献   

17.
SUMO proteins belong to the Ubiquitin-like protein family, all sharing a common fold and a similar mechanism of conjugation to target polypeptides. SUMO is ubiquitous in all eukaryotes and participates in many crucial pathways. Native SUMO proteins are highly soluble, a property that is exploited in biotechnology. Moreover, SUMO regulates the solubility of aggregation-prone proteins in neurodegenerative disorders. Despite these properties, we show here that human SUMO1, SUMO2, and SUMO3 proteins are at risk of aggregation into amyloid structures if their native conformation is perturbed. Aggregation is mediated by specific regions, which overlap with SUMO functional interfaces, illustrating a competition between function and aggregation. Aggregation of SUMOs might have important physiological implications because disruption of the SUMO pathway is lethal in different organisms. It appears that functional constraints make it difficult to avoid the competition between productive folding and deleterious aggregation in globular proteins, even for essential polypeptides.  相似文献   

18.

Background

The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach.

Results

Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response.

Conclusions

Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant proteins induces the UPR's cytosolic counterpart, the UPR-Cyto, which represent a subset of proteins involved in the heat-shock response. The involvement of eEF1A may explain the mechanism by which only large chaperones, but not small Hsps are upregulated during this stress response. Our study highlights important differences between viral surface protein expression in yeast and mammalian cells at the first stage of secretory pathway.  相似文献   

19.
20.
Classic in vitro studies show that the Hsp70 chaperone system from Escherichia coli (DnaK-DnaJ-GrpE, the DnaK system) can bind to proteins, prevent aggregation, and promote the correct refolding of chaperone-bound polypeptides into native proteins. However, little is known about how the DnaK system handles proteins that have already aggregated. In this study, glucose-6-phosphate dehydrogenase was used as a model system to generate stable populations of protein aggregates comprising controlled ranges of particle sizes. The DnaK system recognized the glucose-6-phosphate dehydrogenase aggregates as authentic substrates and specifically solubilized and refolded the protein into a native enzyme. The efficiency of disaggregation by the DnaK system was high with small aggregates, but the efficiency decreased as the size of the aggregates increased. High folding efficiency was restored by either excess DnaK or substoichiometric amounts of the chaperone ClpB. We suggest a mechanism whereby the DnaK system can readily solubilize small aggregates and refold them into active proteins. With large aggregates, however, the binding sites for the DnaK system had to be dynamically exposed with excess DnaK or the catalytic action of ClpB and ATP. Disaggregation by the DnaK machinery in the cell can solubilize early aggregates that formed accidentally during chaperone-assisted protein folding or that escaped the protection of "holding" chaperones during stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号