首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.  相似文献   

2.
Almond β-d-glucosidase was used to catalyze alkyl-β-d-glucoside synthesis by reacting glucose and the alcohol in organic media. The influence of five different solvents and the thermodynamic water activity on the reaction have been studied. The best yields were obtained in 80 or 90% (v/v) tert-butanol, acetone, or acetonitrile where the enzyme is very stable. In this enzymatic synthesis under thermodynamic control, the yield increases as the water activity of the reaction medium decreases. Enzymatic preparative-scale syntheses were performed in a tert-butanol-water mixture which was found to be the most appropriate medium. 2-Hydroxybenzyl β-d-glucopyranoside was obtained in 17% yield using a 90:10 (v/v) tert-butanol-water mixture. Octyl-β-glucopyranoside was obtained in 8% yield using a 60:30:10 (v/v) tert-butanol-octanol-water mixture.  相似文献   

3.
Design of enzymatic kyotorphin synthesis in low water media has been carried out as a function of enzyme nature, the immobilization support material and the reaction medium, by using N-benzoyl-L-tyrosine ethyl ester and L-argininamide as substrates. Native and chemically-glycated alpha-chymotrypsin deposited on supports with different degrees of aquaphilicity (celite, polypropylene PP, and polyamide PA6) were used as catalysts. Binary organic solvent systems of ethanol and different water-immiscible organic cosolvents (ethylacetate, tert-butanol, chloroform, toluene, n-hexane, and n-octane) were studied as reaction media at constant water content (3% v/v). The greater the water binding affinity of the support the lower the synthetic activity of deposited enzymes: the activity of the celite derivative was 4x greater than the polyamide derivative. The enzyme glycation process hardly modified the catalytic ability of the celite derivative, but resulted in a moderate increase in operational stability. The presence of hydrophobic organic cosolvents in the water/ethanol reaction medium significantly increased enzyme activity, whereas the selectivity of the reaction remained high. Hexane was shown to be the best cosolvent, the synthetic activity of the celite derivative in hexane-ethanol (77 : 20%, v/v) being 130x greater than that in 97% (v/v) ethanol.  相似文献   

4.
Almond β- -glucosidase was used to catalyze alkyl-β- -glucoside synthesis by reacting glucose and the alcohol in organic media. The influence of five different solvents and the thermodynamic water activity on the reaction have been studied. The best yields were obtained in 80 or 90% (v/v) tert-butanol, acetone, or acetonitrile where the enzyme is very stable. In this enzymatic synthesis under thermodynamic control, the yield increases as the water activity of the reaction medium decreases. Enzymatic preparative-scale syntheses were performed in a tert-butanol-water mixture which was found to be the most appropriate medium. 2-Hydroxybenzyl β- -glucopyranoside was obtained in 17% yield using a 90:10 (v/v) tert-butanol-water mixture. Octyl-β-glucopyranoside was obtained in 8% yield using a 60:30:10 (v/v) tert-butanol-octanol-water mixture.  相似文献   

5.
Summary The formation of non-covalent complexes with polyelectrolytes has been suggested to enhance the resistance of enzymes towards inactivation by organic solvents in their homogeneous mixtures with water. Existence of such complexes in water-cosolvent media was proved by experiments with a fluorescence dye, eosin. In the case of catalysis by -chymotrypsin, formation of the complex with polyelectrolytes produced two major eflects: i) considerable increase in enzyme activity at concentrations of ethanol and N,N-dimethylformamide of 10–30 % v/v; ii) conservation of the enzymatic activity at cosolvent concentrations of more than 40% v/v, where the native enzyme is completely inactive. General character of the observed activation and stabilization phenomena was shown by example of several experimental systems.  相似文献   

6.
Enzymatic dipeptide synthesis by surfactant-coated alpha-chymotrypsin complexes was performed in supercritical CO(2) and liquid CO(2) at 308.2 and 333.2 K at pressures of 6.1 and 10.1 MPa. The enzymatic activity of coated alpha-chymotrypsin complexes for dipeptides synthesis at 10.1 MPa in supercritical CO(2) (SC-CO(2)) was higher than that in a liquid CO(2) and ethyl acetate solution at 6.1 MPa. The behavior of alpha-chymotrypsin in SC-CO(2) was similar to that in liquid ethyl acetate. And increasing the pressure and temperature increased the maximum conversion and the enzymatic reaction rate in SC-CO(2). Furthermore, the control of the water content in the reaction media had a dominant effect on the enzymatic activity. The maximum conversion for the dipeptide synthesis by the surfactant-coated alpha-chymotrypsin was obtained at 4% water content. The alpha-chymotrypsin complexes exhibited a higher enzymatic activity than native alpha-chymotrypsin in SC-CO(2). The nonionic surfactants l-glutamic acid dialkyl ester ribitol amide and sorbitan monostearate were more favored than the anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate.  相似文献   

7.
α-Chymotrypsin (CT) was lyophilized from an aqueous solution in the presence of hydroxypropyl-β-cyclodextrin (HP-β-CyD). The enzyme preparation was used as a catalyst for transesterification between N-acetyl-l-tyrosine ethyl ester and methanol in a mixed solvent of acetonitrile/water (97/3 (v/v)). The enzyme preparation had much higher catalytic activity than free CT. The activity increased with an increase of HP-β-CyD/CT ratio and reached a maximum activity at the weight ratio of 4. Also, the activity of HP-β-CyD/CT increased with an increase in water content in the reaction media, and the maximum activity was obtained at 5–10% water. The fluorescence spectroscopic analysis suggested that the co-lyophilization with HP-β-CyD increased the structural stability of CT in acetonitrile/water. Upon co-lyophilization with HP-β-CyD, the activity of CT increased in any of the solvents used, but the activity depended strongly on the nature of the organic solvents. The catalytic activity of subtilisin Carlsberg (STC) also increased by co-lyophilization with α-, β-, γ-CyD or tri-O-methyl-β-CyD. α-CyD gave the best result, while HP-β-CyD diminished the activity of STC.  相似文献   

8.
The pollution of soil and the subsurface environment by crude oil spill and petroleum products spill is a major concern around the world. The aim of this research was to investigate the ability of fungi isolated from Tehran oil refinery area in removing crude oil and to evaluate their enzymatic activities. Plant root samples were collected from the polluted and control areas, and rhizospheral fungi were isolated and determined using the laboratory methods and taxonomic keys. Seven fungal species were isolated and then cultured in potato dextrose agar (PDA) media containing 0–15% (v/v) crude oil. Oil removal was determined after a one-month growth of fungal colonies and then compared with the control media. The results showed that the studied fungi were able to remove crude oil from the media. The highest removal efficiency was observed in Aspergillus sp. Total protein content and enzymatic activity (of peroxidase and catalase) increased with increasing crude oil pollution. The highest enzymatic activity was evaluated in Aspergillus sp. growing in media containing 15% petroleum and the lowest activity was found in non-polluted groups. Results showed that there is a direct correlation between oil-removing potency and enzymatic activity. Aspergillus sp. showed the highest enzyme activity and also the highest petroleum removal efficiency.  相似文献   

9.
Summary Oligosaccharides were synthesized through the enzymatic condensation of D-glucose by glucoamylase in water-organic mixtures with high concentrations of two of diethylene glycol diethyl ether or triethylene glycol dimethyl ether. The effect of water content on the yield of reaction was studied; maximum yield was obtained with 10% (v/v) of water in the two systems. Kinetics of synthesis and products composition were different with the two solvents. 37% of glucose were condensed by action of glucoamylase from a reaction medium containing 20 g/L of glucose and 90% (v/v) of diethylene glycol diethyl ether.  相似文献   

10.
Esterification of N-acetyl phenylalanine with ethanol catalyzed by immobilized α-chymotrypsin (EC 3.4.21.1) was studied in various reaction media. The effect of reaction medium polarity on enzymatic activity as well as equilibrium yield was measured. The reaction rate increased with increasing amounts of added water, reaching an optimum corresponding to water saturation of the reaction medium. Further additions of water resulted in decreased activity. Bell-shaped activity profiles were obtained for all reaction media tested. Reaction media consisting of pure solvents and of mixtures of solvents were used. The enzymatic activity and the equilibrium yield increased with decreased polarity of the medium. Maximum activity was found in a reaction medium consisting of 80% diisopropyl ether and 20% heptane. The enzymatic activity obtained at optimal water additions in the different solvents and solvents mixtures could be correlated to the solubility of water and the log P of the medium. The equilibrium yield of the reaction was much more closely correlated to the solubility of water than the log P. Much lower enzymatic activity was obtained when solvent mixtures producing water-miscible media were created, than in mixtures producing water-immiscible media, such as mixtures of acetonitrile and diisopropyl ether. The equilibrium yield could be increased by decreasing the water content in the reaction medium, which reduced the water activity.  相似文献   

11.
Summary The synthesis of L-tyrosine glyceryl ester, from glycerol and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by -chymotrypsin. Values of 60 % (v/v) for glycerol and 200 mM for L-tyrosine methyl ester were optimal for the transesterification reaction. Additionally to glycerol, several other water miscible cosolvents (acetonitrile, N,N'-dimetyl formamide and tetrahydrofurane) were tested in the reaction media, but their presence did not give an enhancement on the transesterification activity with respect to the glycerol/water medium. However, increasing the hydrophobicity of the cosolvent resulted in a reduction of the enzyme activity, the water:glycerol mixture being the best reaction media.  相似文献   

12.
Enzymatic synthesis of arginine-based cationic surfactants   总被引:4,自引:0,他引:4  
A novel enzymatic approach for the synthesis of arginine N-alkyl amide and ester derivatives is reported. Papain deposited onto solid support materials was used as catalyst for the amide and ester bond formation between Z-Arg-OMe and various long-chain alkyl amines and alcohols (H2N-Cn2, HO-Cn; n = 8-16) in organic media. Changes in enzymatic activity and product yield were studied for the following variables: organic solvent, aqueous buffer content, support for the enzyme deposition, presence of additives, enzyme loading, substrate concentration, and reaction temperature. The best yields (81-89%) of arginine N-alkyl amide derivatives were obtained at 25 degrees C in acetonitrile with an aqueous buffer content ranging from 0 to 1% (v/v) depending on the substrate concentration. The synthesis of arginine alkyl ester derivatives was carried out in solvent-free systems at 50 or 65 degrees C depending on the fatty alcohol chain length. In this case, product yields ranging from 86 to 89% were obtained with a molar ratio Z-Arg-OMe/fatty alcohol of 0.01. Papain deposited onto polyamide gave, in all cases, both the highest enzymatic activities and yields. Under the best reaction conditions the syntheses were scaled up to the production of 2 g of final product. The overall yields, which include reaction, Nalpha-benzyloxycarbonyl group (Z) deprotection and purification, varied from 53 to 77% of pure (99.9% by HPLC) product.  相似文献   

13.
The enzymatic synthesis of the tripeptide derivative Z-Gly-Trp-Met-OEt is reported. This tripeptide is a fragment of the cholecystokinin C-terminal octapeptide CCK-8. Studies on the alpha-chymotrypsin catalyzed coupling reaction between Z-Gly-Trp-R(1) and Met-R(2) have focused on low water content media, using deposited enzyme on inert supports such as Celite and polyamide. The effect of additives (polar organic solvents), the acyl-donor ester structure, the C-alpha protecting group of the nucleophile, enzyme loading, and substrate concentration were tested. The best reaction medium found was acetonitrile containing buffer (0.5%, v/v) and triethylamine (0.5%, v/v) using the enzyme deposited on Celite as catalyst (8 mg of alpha-chymotrypsin/g of Celite). A reaction yield of 81% was obtained with Z-Gly-Trp-OCam as acyl donor, at an initial concentration of 80 mM. The tripeptide synthesis was scaled up to the production of 2 g of pure tripeptide with an overall yield of 71%, including reaction and purification steps. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The enzymatic synthesis of N‐acetyl‐lactosamine (LacNAc) by the transgalactosylation of N‐acetyl‐D ‐glucosamine (GlcNAc), catalyzed by the β‐galactosidase from Bacillus circulans (BcβGal), was studied in hydro‐organic media, starting from o‐nitrophenyl‐β‐D ‐galactopyranoside (oNPG) as a galactosyl donor. Thermal stability and synthesis activity of BcβGal were shown to depend on the organic solvent polarity, characterized by its Log P value. BcβGal was thus most stable in 10% (v/v) t‐BuOH, an organic solvent found to have a stabilizing and/or weakly denaturing property, which was confirmed for high t‐BuOH concentrations. In the same manner, the optimal synthesis yield increased as the Log P value of the organic solvent increased. The best results were obtained for reactions carried out in 10% (v/v) pyridine or 2‐methyl‐2‐butanol, which gave 47% GlcNAc transgalactosylation yield based on starting oNPG, of which 23% (11 mM; 4.3 g/L) consisted in LacNAc synthesis. Furthermore, it was also established that both the GlcNAc transgalactosylation yield and the enzyme regioselectivity depended on the percentage of organic solvent used, the optimal percentage varying from 10 to 40% (v/v), depending on the solvent. This phenomenon was found to correlate mainly with the thermodynamic activity of water (aw) in the aqueous organic solvent mixture, which was found to be optimal when close to 0.96, whatever the organic solvent used. Finally, this study highlighted the fact that the regioselectivity of BcβGal for 1‐4 linkage formation could be advantageously managed by controlling the aw parameter. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
-Chymotrypsin was crosslinked to give a water-insoluble polymer by treatment with the bifunctional reagent glutaraldehyde. The specific activity of the crosslinked enzyme in aqueous media was three orders of magnitude lower than for the native chymotrypsin. In a medium containing more than 50% (v/v) of dimethylformamide the specific activities of both enzymes were comparable. In addition, the insoluble polymer was more stable in the presence of 60% (v/v) dimethylformamide compared with the native enzyme. Therefore, in this medium enzymatic peptide synthesis could be successfully accomplished with the crosslinked enzyme, but not with the same amount of native chymotrypsin.  相似文献   

16.
A novel preparation method for surfactant-lipase complexes has been developed utilizing water in oil emulsions. In order to optimize the preparation conditions, we have investigated the effects of several operational parameters on the enzymatic activity of the surfactant-lipase complexes in organic media. When a nonionic surfactant was employed under optimal preparation conditions [alkaline pH 8-10, organic/aqueous = 90/10 (v/v), concentration of surfactant, 10 mM[, the surfactant-lipase complex efficiently catalyzed the esterification of benzyl alcohol with lauric acid in organic media. The esterification rate of the surfactant-lipase complex was increased over 16-fold relative to the native powder lipase. Furthermore, the lipase complex showed high storage stability. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 455-460, 1997.  相似文献   

17.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content > 80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70-98% in DMF-MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

18.
Summary Isoamyl acetate synthesis was chosen as a model to improve flavour acetate yields by optimising the enzymatic reaction. Alcohol:acid molar ratio, temperature, water content and amount of enzyme effects were analyzed. The optimum values were respectively 4, 45°C, 0,1% (w/v) and 0,5 g. In these conditions, the synthesis yield reached 80 % after 24 h of reaction and was found 15 times greater than those already reported in the literature.  相似文献   

19.
Four different ionic liquids, based on dialkylimidazolium cations associated with perfluorinated and bis(trifluoromethyl)sulfonyl amide anions were used as reaction media for butyl butyrate synthesis catalyzed by free Candida antarctica lipase B at 2% (v/v) water content and 50 °C. Lipase had enhanced synthetic activity in all ionic liquids in comparison with two organic solvents (hexane, and 1-butanol), the enhanced activity being related to the increase in polarity of ionic liquids. The continuous operation of lipase with all the assayed ionic liquids showed over-stabilization of the enzyme. The reuse of free lipase in 1-butyl-3-methylimidazolium hexafluorophosphate in continuous operation cycles showed a half-life time 2300 times greater than that observed when the enzyme was incubated in the absence of substrate (3.2 h), and a selectivity higher than 90%.  相似文献   

20.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content >80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, Lys, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70–98% in DMF–MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号