首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicins are antibiotic proteins that kill sensitive Escherichia coli cells. Their mode of action involves three steps: binding to specific receptors located in the outer membrane, translocation across this membrane, and action on their targets. A specific colicin domain can be assigned to each of these steps. Colicins have been subdivided into two groups (A and B) depending on the proteins required for them to cross the external membrane. Plasmids were constructed which led to an overproduction of the Tol proteins involved in the import of group A colicins. In vitro binding of overexpressed Tol proteins to either Tol-dependent (group A) or TonB-dependent (group B) colicins was analyzed. The Tol dependent colicins A and E1 were able to interact with TolA but the TonB dependent colicin B was not. The C-terminal region of TolA, which is necessary for colicin uptake, was also found to be necessary for colicin A and E1 binding to occur. Furthermore, only the isolated N-terminal domain of colicin A, which is involved in the translocation step, was found to bind to TolA. These results demonstrate the existence of a correlation between the ability of group A colicins to translocate and their in vitro binding to TolA protein, suggesting that these interactions might be part of the colicin import process.  相似文献   

2.
The Tol system is an interactive set of envelope proteins that includes both outer and cytoplasmic membrane proteins. Central to this system is TolA, which spans the periplasmic space to communicate with residents of each membrane. To identify motifs involved in the protein/protein interactions through which TolA acts, the ability of a phylogenetically distinct TolA protein from Yersinia enterocolitica to function in the Tol system of Escherichia coli was examined. Although at least 59 codons shorter and only c . 67% identical to its E. coli homologue, the Y. enterocolitica gene encoded a protein that supported the physiological function of the Tol system in E. coli , and conferred sensitivity to the TolA-dependent colicins A, K, and E1, but interestingly, not to colicin N. The correlation of conferred phenotype with sequence similarities and differences provides a first step in defining essential structural motifs and their specific contributions to function.  相似文献   

3.
Several proteins of the Tol/Pal system are required for group A colicin import into Escherichia coli. Colicin A interacts with TolA and TolB via distinct regions of its N-terminal domain. Both interactions are required for colicin translocation. Using in vivo and in vitro approaches, we show in this study that colicin A also interacts with a third component of the Tol/Pal system required for colicin import, TolR. This interaction is specific to colicins dependent on TolR for their translocation, strongly suggesting a direct involvement of the interaction in the colicin translocation step. TolR is anchored to the inner membrane by a single transmembrane segment and protrudes into the periplasm. The interaction involves part of the periplasmic domain of TolR and a small region of the colicin A N-terminal domain. This region and the other regions responsible for the interaction with TolA and TolB have been mapped precisely within the colicin A N-terminal domain and appear to be arranged linearly in the colicin sequence. Multiple contacts with periplasmic-exposed Tol proteins are therefore a general principle required for group A colicin translocation.  相似文献   

4.
The Tol proteins are involved in outer membrane stability of Gram-negative bacteria. The TolQRA proteins form a complex in the inner membrane while TolB and Pal interact near the outer membrane. These two complexes are transiently connected by an energy-dependent interaction between Pal and TolA. The Tol proteins have been parasitized by group A colicins for their translocation through the cell envelope. Recent advances in the structure and energetics of the Tol system, as well as the interactions between the N-terminal translocation domain of colicins and the Tol proteins are presented.  相似文献   

5.
Protein 1, a major protein of the outer membrane of Escherichia coli, has been shown to be the pore allowing the passage of small hydrophilic solutes across the outer membrane. In E. coli K-12 protein 1 consists of two subspecies, 1a and 1b, whereas in E. coli B it consists of a single species which has an electrophoretic mobility similar to that of 1a. K-12 strains mutant at the ompB locus lack both proteins 1a and 1b and exhibit multiple transport defects, resistance to toxic metal ions, and tolerance to a number of colicins. Mutation at the tolF locus results in the loss of 1a, in less severe transport defects, and more limited colicin tolerance. Mutation at the par locus causes the loss of protein 1b, but no transport defects or colicin tolerance. Lysogeny of E. coli by phage PA-2 results in the production of a new major protein, protein 2. Lysogeny of K-12 ompB mutants resulted in dramatic reversal of the transport defects and restoration of the sensitivity to colicins E2 and E3 but not to other colicins. This was shown to be due to the production of protein 2, since lysogeny by phage mutants lacking the ability to elicit protein 2 production did not show this effect. Thus, protein 2 can function as an effective pore. ompB mutations in E. coli B also resulted in loss of protein 1 and similar multiple transport defects, but these were only partially reversed by phage lysogeny and the resulting production of protein 2. When the ompB region from E. coli B was moved by transduction into an E. coli K-12 background, only small amounts of proteins 1a and 1b were found in the outer membrane. These results indicate that genes governing the synthesis of outer membrane proteins may not function interchangeably between K-12 and B strains, indicating differences in regulation or biosynthesis of these proteins between these strains.  相似文献   

6.
Escherichia coli K-12 strains carrying mutations in the ompB gene or double mutations in the tolF and par genes lack the major outer membrane proteins 1a and 1b. These strains are deficient in the transport of small hydrophylic compounds and are multiply colicin resistant. When revertants of these strains were sought, a number of extragenic pseudorevertants were obtained which produced new outer membrane proteins. These new proteins could be divided into three classes by differences in electrophoretic mobility on polyacrylamide gels, by differing specificities for transport of small molecules, and by the identification of three different genetic loci for genes controlling their production. These genetic loci are designated as nmpA (at approximately 82.5 min on the E. coli K-12 genetic map), nmpB (8.6 min), and nmpC (12 min). The new proteins produced in strains carrying nmpA, nmpB, or nmpC mutations did not cross-react with antiserum against a mixture of proteins 1a and 1b, or with antiserum against phage-directed protein 2. Production of the new membrane proteins restored sensitivity to some of the colicins.  相似文献   

7.
Quantification of group A colicin import sites.   总被引:7,自引:4,他引:3       下载免费PDF全文
Pore-forming colicins are soluble bacteriocins which form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, these colicins first bind to a receptor located on the outer membrane and then are translocated through the envelope. Colicins are subdivided into two groups according to the envelope proteins involved in their translocation: group A colicins use the Tol proteins; group B colicins use the proteins TonB, ExbB, and ExbD. We have previously shown that a double-cysteine colicin A mutant which possesses a disulfide bond in its pore-forming domain is translocated through the envelope but is unable to form a channel in the inner membrane (D. Duché, D. Baty, M. Chartier, and L. Letellier, J. Biol. Chem. 269:24820-24825, 1994). Measurements of colicin-induced K+ efflux reveal that preincubation of the cells with the double-cysteine mutant prevents binding of colicins of group A but not of group B. Moreover, we show that the mutant is still in contact with its receptor and import machinery when it interacts with the inner membrane. From these competition experiments, we conclude that each Escherichia coli cell contains approximately 400 and 1,000 colicin A receptors and translocation sites, respectively.  相似文献   

8.
Mutations in fii or tolA of the fii-tolA-tolB gene cluster at 17 min on the Escherichia coli map render cells tolerant to high concentrations of the E colicins and do not allow the DNA of infecting single-stranded filamentous bacteriophages to enter the bacterial cytoplasm. The nucleotide sequence of a 1,854-base-pair DNA fragment carrying the fii region was determined. This sequence predicts three open reading frames sequentially coding for proteins of 134, 230, and 142 amino acids, followed by the potential start of the tolA gene. Oligonucleotide mutagenesis of each open reading frame and maxicell analysis demonstrated that all open reading frames are expressed in vivo. Sequence analysis of mutant fii genes identified the 230-amino acid protein as the fii gene product. Chromosomal insertion mutations were constructed in each of the two remaining open reading frames. The phenotype resulting from an insertion of the chloramphenicol gene into the gene coding for the 142-amino acid protein is identical to that of mutations in fii and tolA. This gene is located between fii and tolA, and we propose the designation of tolQRA for this cluster in which tolQ is the former fii gene and tolR is the new open reading frame. The protein products of this gene cluster play an important role in the transport of large molecules such as the E colicins and filamentous phage DNA into the bacterium.  相似文献   

9.
The aim of this review is to describe an in vivo assay of the interactions taking place in the Tol-Pal or TonB-ExbB-ExbD envelope complexes in the periplasm of Escherichia coli and between them and colicins or g3p protein of filamentous bacteriophages. Domains of colicins or periplasmic soluble domains of Tol or TonB proteins can be artificially addressed to the periplasm of bacteria by fusing them to a signal sequence from an exported protein. These domains interact specifically in the periplasm with the Tol or TonB complexes and disturb their function, which can be directly detected by the appearance of specific tol or tonB phenotypes. This technique can be used to detect new interactions, to characterize them biochemically and to map them or to induce tol or tonB phenotypes to study the functions of these two complexes.  相似文献   

10.
Colicins use two envelope multiprotein systems to reach their cellular target in susceptible cells of Escherichia coli : the Tol system for group A colicins and the TonB system for group B colicins. The N-terminal domain of colicins is involved in the translocation step. To determine whether it interacts in vivo with proteins of the translocation system, constructs were designed to produce and export to the cell periplasm the N-terminal domains of colicin E3 (group A) and colicin B (group B). Producing cells became specifically tolerant to entire extracellular colicins of the same group. The periplasmic N-terminal domains therefore compete with entire colicins for proteins of the translocation system and thus interact in situ with these proteins on the inner side of the outer membrane. In vivo cross-linking and co-immunoprecipitation experiments in cells producing the colicin E3 N-terminal domain demonstrated the existence of a 120 kDa complex containing the colicin domain and TolB. After in vitro cross-linking experiments with these two purified proteins, a 120 kDa complex was also obtained. This suggests that the complex obtained in vivo contains exclusively TolB and the colicin E3 domain. The N-terminal domain of a translocation-defective colicin E3 mutant was found to no longer interact with TolB. Hence, this interaction must play an important role in colicin E3 translocation.  相似文献   

11.
In Gram-negative bacteria, many biological processes are coupled to inner membrane ion gradients. Ions transit at the interface of helices of integral membrane proteins, generating mechanical energy to drive energetic processes. To better understand how ions transit through these channels, we used a model system involved in two different processes, one of which depends on inner membrane energy. The Tol machinery of the Escherichia coli cell envelope is dedicated to maintaining outer membrane stability, a process driven by the proton-motive force. The Tol system is parasitized by bacterial toxins called colicins, which are imported through the outer membrane using an energy-independent process. Herein, we mutated TolQ and TolR transmembrane residues, and we analyzed the mutants for outer membrane stability, colicin import and protein complex formation. We identified residues involved in the assembly of the complex, and a new class of discriminative mutations that conferred outer membrane destabilization identical to a tol deletion mutant, but which remained fully sensitive to colicins. Further genetic approaches revealed transmembrane helix interactions and organization in the bilayer, and suggested that most of the discriminative residues are located in a putative aqueous ion channel. We discuss a model for the function of related bacterial molecular motors.  相似文献   

12.
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.  相似文献   

13.
The Tol-Pal proteins of the cell envelope of Escherichia coli are required for maintaining outer membrane integrity. This system forms protein complexes in which TolA plays a central role by providing a bridge between the inner and outer membranes via its interaction with the Pal lipoprotein. The Tol proteins are parasitized by filamentous bacteriophages and group A colicins. The N-terminal domain of the Ff phage g3p protein and the translocation domains of colicins interact directly with TolA during the processes of import through the cell envelope. Recently, a four-amino-acid sequence in Pal has been shown to be involved in Pal's interaction with TolA. A similar motif is also present in the sequence of two TolA partners, g3p and colicin A. Here, a mutational study was conducted to define the function of these motifs in the binding activity and import process of TolA. The various domains were produced and exported to the bacterial periplasm, and their cellular effects were analyzed. Cells producing the g3p domain were tolerant to colicins and filamentous phages and had destabilized outer membranes, while g3p deleted of three residues in the motif was affected in TolA binding and had no effect on cell integrity or colicin or phage import. A conserved Tyr residue in the colicin A translocation domain was involved in TolA binding and colicin A import. Furthermore, in vivo and in vitro coprecipitation analyses demonstrated that colicin A and g3p N-terminal domains compete for binding to TolA.  相似文献   

14.
Group A colicins need proteins of the Escherichia coli envelope Tol complex (TolA, TolB, TolQ and TolR) to reach their cellular target. The N-terminal domain of colicins is involved in the import process. The N-terminal domains of colicins A and E1 have been shown to interact with TolA, and the N-terminal domain of colicin E3 has been shown to interact with TolB. We found that a pentapeptide conserved in the N-terminal domain of all group A colicins, the 'TolA box', was important for colicin A import but was not involved in the colicin A–TolA interaction. It was, however, involved in the colicin A–TolB interaction. The interactions of colicin A N-terminal domain deletion mutants with TolA and TolB were investigated. Random mutagenesis was performed on a construct allowing the colicin A N-terminal domain to be exported in the bacteria periplasm. This enabled us to select mutant protein domains unable to compete with the wild-type domain of the entire colicin A for import into the cells. Our results demonstrate that different regions of the colicin A N-terminal domain interact with TolA and TolB. The colicin A N-terminal domain was also shown to form a trimeric complex with TolA and TolB.  相似文献   

15.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

16.
Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.  相似文献   

17.
Microcin-E492-insensitive mutants of Escherichia coli K12   总被引:7,自引:0,他引:7  
Mutations in three Escherichia coli K12 genes, tonB, exbB and the newly discovered semA, reduce sensitivity to the low Mr polypeptide antibiotic microcin E492. The products of the tonB and exbB genes were previously shown to be involved in the uptake of siderophore-complexed iron and in the action of a number of colicins. Strains mutated at or close to semA (collectively referred to as sem mutations) remained fully sensitive to these colicins, and grew as well as wild-type strains under conditions of iron starvation. Expression of a number of sem-lacZ operon fusions was not affected by iron limitation, and sem mutations did not affect the production of iron-regulated outer membrane proteins which are known or thought to be involved in iron uptake. Hfr conjugation and P1 phage transduction experiments indicated that semA is located close to pabB at 40 min on the E. coli K12 chromosome. This places semA close to the mng locus, wherein mutations result in decreased manganese sensitivity. However, strains carrying the semA mutation exhibited increased manganese sensitivity.  相似文献   

18.
The Tol system is a five‐protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram‐negative outer membrane (OM). We show that allosteric signalling through the six‐bladed β‐propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein–protein interactions with the TolB β‐propeller govern two conformational states that are adopted by the distal N‐terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this ‘TolA box’ and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in β‐propeller proteins than currently realized.  相似文献   

19.
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import.  相似文献   

20.
L. L. Parker  B. G. Hall 《Genetics》1990,124(3):455-471
Wild-type Escherichia coli are not able to utilize beta-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel operon consists of five genes: celA, whose function is unknown; celB and celC which encode phosphoenolpyruvate-dependent phosphotransferase system enzyme IIcel and enzyme IIIcel, respectively, for the transport and phosphorylation of beta-glucoside sugars; celD, which encodes a negative regulatory protein; and celF, which encodes a phospho-beta-glucosidase that acts on phosphorylated cellobiose, arbutin and salicin. The mutationally activated cel operon is induced in the presence of its substrates, and is repressed in their absence. A comparison of proteins encoded by the cel operon with functionally equivalent proteins of the bgl operon, another cryptic E. coli gene system responsible for the catabolism of beta-glucoside sugars, revealed no significant homology between these two systems despite common functional characteristics. The celD and celF encoded repressor and phospho-beta-glucosidase proteins are homologous to the melibiose regulatory protein and to the melA encoded alpha-galactosidase of E. coli, respectively. Furthermore, the celC encoded PEP-dependent phosphotransferase system enzyme IIIcel is strikingly homologous to an enzyme IIIlac of the Gram-positive organism Staphylococcus aureus. We conclude that the genes for these two enzyme IIIs diverged much more recently than did their hosts, indicating that E. coli and S. aureus have undergone relatively recent exchange of chromosomal genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号