首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Small ubiquitin-related modifier-1 (SUMO-1), a member of the SUMO family, is evolutionally conserved from yeast to humans. First identified in 1997, the active 97 amino acid protein conjugates to and modifies a wide variety of target proteins. Through post-translational SUMOylation of cellular proteins, SUMO-1 is involved in a myriad of biologically important events such as cell cycle progression, the maintenance of genome integrity, nuclear transport and apoptosis. Interestingly, SUMO-1 has been suggested to have the ability to act as an ubiquitin antagonist, with which it shares 18% identity. Given its wide variety of functions, it follows that alterations to this molecule could be implicated in many disease states. To date, dysregulated SUMOylation has been implicated in several neurodegenerative disorders, heart disease and cancer. This highlights not only the need for further research but also the potential of SUMO-1 as a therapeutic target.  相似文献   

3.

Background

cMYC regulates approximately 15% of human genes and is involved in up to 20% of all human cancers. Reports discussing cMYC protein expression in thyroid carcinomas are limited, with controversies pertaining to cMYC expression patterns noted in the literature. The aims of the current study were to clarify patterns and intensities of cMYC expression in follicular cell-derived thyroid carcinomas across a spectrum of cancer morphologies and disease aggressivities, to correlate cMYC with BRAFV600E expression, and to evaluate the potential role of cMYC in progression of well-differentiated thyroid carcinomas into less well-differentiated carcinomas.

Methods

Immunohistochemical studies using specific monoclonal antibodies for cMYC and BRAFV600E were performed on tissue microarrays built from follicular cell-derived thyroid carcinomas (25 papillary, 24 follicular, 24 oncocytic variant of follicular, and 21 undifferentiated). In addition, cMYC IHC testing was also performed on whole tissue tumor sections from a subset of patients. Nodular hyperplasia cases were used as non-neoplastic controls. Appropriate positive and negative controls were included.

Results

cMYC was expressed almost exclusively in a nuclear fashion in both thyroid carcinomas and nodular hyperplasias. cMYC expression was weakly positive in both nodular hyperplasias and well-differentiated carcinomas. The majority of undifferentiated carcinomas (UDCs) showed strong nuclear cMYC positivity. PTC cases that were positive for cMYC (6/25) harbored the BRAF V600E mutation. A correlation was confirmed between cMYC intensity and tumor size in UDCs. UDC cases that developed out of well-differentiated thyroid carcinomas showed frank overexpression of cMYC in the undifferentiated tumor components.

Conclusions

Our study suggests that nuclear overexpression of cMYC correlates with tumorigenesis / dedifferentiation in follicular cell derived thyroid carcinomas, a concept that has not been shown before on whole tissue sections.
  相似文献   

4.
5.
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell''s malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.  相似文献   

6.
7.
8.
Papillary thyroid carcinomas (PTCs) have characteristic nuclear shape changes compared to follicular-type thyroid epithelium. We tested the hypothesis that the altered nuclear shape results from altered distribution or expression of the major structural proteins of the nuclear envelope. Lamin A, lamin B1, lamin C, lamin B receptor (LBR), lamina-associated polypeptide 2 (LAP2), emerin, and nuclear pores were examined. PTC's with typical nuclear features by H&E were compared to non-neoplastic thyroid and follicular neoplasms using confocal microscopy, and semi-quantitative immunoblotting. Lamin A/C, lamin B1, LAP2, emerin, and nuclear pores all extend throughout the grooves and intranuclear inclusions of PTC. Their distribution and fluorescent intensity is not predictably altered relative to nuclear envelope irregularities. By immunoblotting, the abundance (per cell) and electrophoretic mobilities of lamin A, lamin B1, lamin C, emerin, and LAP2 proteins do not distinguish PTC, normal thyroid, or follicular neoplasms. These results do not support previously published predictions that lamin A/C expression is related to a loss of proliferative activity. At least three LAP2 isoforms are identified in normal and neoplastic thyroid. LBR is sparse or undetectable in all the thyroid samples. The results suggest that the irregular nuclear shape of PTC is not determined by these nuclear envelope structural proteins per se. We review the structure of the nuclear envelope, the major factors that determine nuclear shape, and the possible functional consequences of its alteration in PTC.  相似文献   

9.
Mouse prostate membrane-associated proteins of the annexin family showed changes in SUMOylation during androgen treatment. Among these the calcium-binding annexin A1 protein (ANXA1) was chosen for further characterization given its role in protein secretion and cancer. SUMOylation of ANXA1 was confirmed by overexpressing SUMO-1 in LNCaP cells. Site-directed mutagenesis indicated that K257 located in a SUMOylation consensus motif in the C-terminal calcium-binding DA3 repeat domain is SUMOylated. Mutation of the N-terminal Y21 decreased markedly the SUMOylation signal while EGF stimulation increased ANXA1 SUMOylation. A structural analysis of ANXA1 revealed that K257 is located in a hot spot where Ca2 + and SUMO-1 bind and where a nuclear export signal and a polyubiquitination site are also present. Also, Y21 is buried inside an α-helix structure in the Ca2 +-free conformation implying that Ca2 + binding, and the subsequent expelling of the N-terminal α-helix in a disordered conformation, is permissive for its phosphorylation. These results show for the first time that SUMOylation can be regulated by an external signal (EGF) and indicate the presence of a cross-talk between the N-terminal and C-terminal domains of ANXA1 through post-translational modifications.  相似文献   

10.
BACKGROUND: The columnar and tall cell variants of papillary thyroid carcinoma (PTC) are uncommon variants and have generally been regarded as more aggressive forms in comparison to the more common classic papillary and follicular subtypes. Cytologic diagnosis of these rare variants is elusive since the characteristic nuclear features of the usual papillary thyroid carcinoma are very often absent or inconspicuous. We present a case of the columnar cell variant of PTC in a young woman that demonstrates the diagnostic challenge. CASE: A 24-year-old woman presented with a solitary, 3-cm mass in the left aspect of the thyroid. The aspirate consisted of a moderately cellular sampling of sheets, papillary clusters and microfollicles of cells with oval nuclei and uniform, finely granular chromatin. These cells were arranged in a peudostratified manner around well-defined fibrovascular cores. There were no intranuclear inclusions or well-defined nuclear grooves in the cells of the aspirate. There was also absence of colloid despite the presence of well-formed follicles. The resected thyroid revealed a columnar cell variant of PTC. CONCLUSION: The cytologic features of columnar cell-type PTC are at variance with those of classic PTC and are elusive in fine needle aspiration cytology. It is the lack of classic cytologic features of PTC that is distinctly apparent, yet it is the monomorphism of cells in the aspirate, their papillary configuration and their pseudostratification in well-formed fibrovascular cores that are the keys to the diagnosis. Immunohistochemical staining to rule out other thyroid neoplasms can be performed to aid in the diagnosis.  相似文献   

11.
SUMOylation plays important roles in the DNA damage response. However, whether it is important for interstrand crosslink repair remains unknown. We report that the SLX4 nuclease scaffold protein is regulated by SUMOylation. We have identified three SUMO interaction motifs (SIMs) in SLX4, mutating all of which abrogated the binding of SLX4 to SUMO-2 and covalent SLX4 SUMOylation. An SLX4 mutant lacking functional SIMs is not recruited to PML nuclear bodies nor stabilized at laser-induced DNA damage sites. Additionally, we elucidated a novel role for PARylation in the recruitment of SLX4 to sites of DNA damage. Combined, our results uncover how SLX4 is regulated by post-translational modifications.  相似文献   

12.
13.
Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.  相似文献   

14.
A subset of patients with papillary thyroid cancer (PTC) present with aggressive disease that is refractory to conventional treatment. Novel therapies are needed to treat this group of patients. Galectin-3 (Gal-3) is a β-galactoside-binding protein with anti-apoptotic activity. Over 30 studies in the last 3 years have reported that Gal-3 is highly expressed in PTC relative to normal thyrocytes. In this study, we show that Gal-3 silencing with RNA interference stimulates apoptosis, while Gal-3 overexpression protects against both TRAIL- and doxorubicin-induced apoptosis in PTC cells. The anti-apoptotic activity and chemoresistance related to Gal-3 function can be partially reversed through the inhibition of the PI3K-Akt pathway, suggesting that Gal-3 acts, at least in part, on the PI3K-Akt axis. These observations support further evaluation of Gal-3 as a potential therapeutic target in patients with aggressive PTC.  相似文献   

15.
Hepatoma-derived growth factor is a nuclear targeted mitogen containing a PWWP domain that mediates binding to DNA. To date, almost nothing is known about the molecular mechanisms of the functions of hepatoma-derived growth factor, its routes of secretion and internalization or post-translational modifications. In the present study, we show for the first time that hepatoma-derived growth factor is modified by the covalent attachment of small ubiquitin-related modifier 1 (SUMO-1), a post-translational modification with regulatory functions for an increasing number of proteins. Using a basal SUMOylation system in Escherichia coli followed by a MALDI-TOF-MS based peptide analysis, we identified the lysine residue SUMOylated located in the N-terminal part of the protein adjacent to the PWWP domain. Surprisingly, this lysine residue is not part of the consensus motif described for SUMOylation. With a series of hepatoma-derived growth factor mutants, we then confirmed that this unusual location is also used in mammalian cells and that SUMOylation of hepatoma-derived growth factor takes place in the nucleus. Finally, we demonstrate that SUMOylated hepatoma-derived growth factor is not binding to chromatin, in contrast to its unSUMOylated form. These observations potentially provide new perspectives for a better understanding of the functions of hepatoma-derived growth factor.  相似文献   

16.
Lee YJ  Mou Y  Maric D  Klimanis D  Auh S  Hallenbeck JM 《PloS one》2011,6(10):e25852
We have previously shown that a massive increase in global SUMOylation occurs during torpor in ground squirrels, and that overexpression of Ubc9 and/or SUMO-1 in cell lines and cortical neurons protects against oxygen and glucose deprivation. To examine whether increased global SUMOylation protects against ischemic brain damage, we have generated transgenic mice in which Ubc9 is expressed strongly in all tissues under the chicken β-actin promoter. Ubc9 expression levels in 10 founder lines ranged from 2 to 30 times the endogenous level, and lines that expressed Ubc9 at modestly increased levels showed robust resistance to brain ischemia compared to wild type mice. The infarction size was inversely correlated with the Ubc9 expression levels for up to five times the endogenous level. Although further increases showed no additional benefit, the Ubc9 expression level was highly correlated with global SUMO-1 conjugation levels (and SUMO-2,3 levels to a lesser extent) up to a five-fold Ubc9 increase. Most importantly, there were striking reciprocal relationships between SUMO-1 (and SUMO-2,3) conjugation levels and cerebral infarction volumes among all tested animals, suggesting that the limit in cytoprotection by global SUMOylation remains undefined. These results support efforts to further augment global protein SUMOylation in brain ischemia.  相似文献   

17.
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.  相似文献   

18.
Ground squirrels in hibernation torpor have been shown to have striking increases in global SUMOylation on tissue immunoblots. Here, we find evidence that global SUMOylation is also involved in ischemic tolerance in primary cortical neuronal cultures (from rats and mice) and SHSY5Y human neuroblastoma cells. Cultured cortical neurons preconditioned by sublethal oxygen/glucose deprivation (OGD) were less vulnerable to severe OGD than non-preconditioned neurons. Preconditioned neurons maintained elevated SUMO-1 conjugation levels (and, to a lesser extent those of SUMO-2/3) on western blots in contrast to non-preconditioned cells. Further, cortical neurons and SHSY5Y cells in which transfected SUMO-1 or SUMO-2 were over-expressed showed increased survival after severe OGD. In contrast, cell cultures subjected to depletion of endogenous SUMO-1 protein by RNAi had reduced survival after exposure to this form of in vitro ischemia and an attenuated protective response to preconditioning. These findings suggest that maintenance of a globally elevated SUMO-1 (and maybe SUMO-2/3) conjugation level as revealed by immunoblot assays is a component of ischemic tolerance.  相似文献   

19.
20.
SUMOylation is a highly transient post-translational protein modification. Attachment of SUMO to target proteins occurs via a number of specific activating and ligating enzymes that form the SUMO-substrate complex, and other SUMO-specific proteases that cleave the covalent bond, thus leaving both SUMO and target protein free for the next round of modification. SUMO modification has major effects on numerous aspects of substrate function, including subcellular localisation, regulation of their target genes, and interactions with other molecules. The modified SUMO-protein complex is a very transient state, and it thus facilitates rapid response and actions by the cell, when needed. Like phosphorylation, acetylation and ubiquitination, SUMOylation has been associated with a number of cellular processes. In addition to its nuclear role, important sides of mitochondrial activity, stress response signalling and the decision of cells to undergo senescence or apoptosis, have now been shown to involve the SUMO pathway. With ever increasing numbers of reports linking SUMO to human disease, like neurodegeneration and cancer metastasis, it is highly likely that novel and equally important functions of components of the SUMOylation process in cell signalling pathways will be elucidated in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号