首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The core region of Pseudomonas aeruginosa lipopolysaccharide (LPS) was analysed by four LPS-core-specific human monoclonal antibodies (mAbs; FK-2E7, MH-4H7, OM-1D6 and NM-3G8). Reactivity of these mAbs to about 180 P. aeruginosa strains was tested. FK-2E7 bound to strains of Homma serotype E and I at a frequency of about 90%, to strains of serotype M at about 50%, and to strains of serotype A and G at about 30%. MH-4H7 bound to P. aeruginosa strains of serotype A, F, G, H, K and M at a high frequency (45-87%), but did not bind to any strains of serotype B, C, E and I. OM-1D6 and NM-3G8 bound to P. aeruginosa strains in a nearly serotype-specific manner. OM-1D6 reacted with all strains of serotype G so far tested, and a few strains of serotype M. Furthermore, L-rhamnose in the LPS core of serotype G was an immunodominant sugar recognized by OM-1D6 as an epitope. NM-3G8 bound to only a few strains of serotype B and M. The variable reactivity of these mAbs suggests that antigenic heterogeneity of the LPS core is somewhat related with (O-polysaccharide-based) serotype. Among these mAbs, MH-4H7 and OM-1D6 showed a high level of protective activity against P. aeruginosa in an experimental infection model using normal mice. In vivo protective activity was shown to be closely related to in vitro binding activity to whole cells as determined by agglutination and flow cytometry, but not ELISA.  相似文献   

3.
Calbindin D9k is a small, well-studied calcium-binding protein consisting of two helix-loop-helix motifs called EF-hands. The P43MG2 mutant is one of a series of mutants designed to sequentially lengthen the largely unstructured tether region between the two EF-hands (F36-S44). A lower calcium affinity for P43MG was expected on the basis of simple entropic arguments. However, this is not the case and P43MG (-97 kJ.mol-1) has a stronger calcium affinity than P43M (-93 kJ.mol-1), P43G (-95 kJ.mol-1) and even wild-type protein (-96 kJ.mol-1). An NMR study was initiated to probe the structural basis for these calcium-binding results. The 1H NMR assignments and 3JHNH alpha values of the calcium-free and calcium-bound form of P43MG calbindin D9k mutant are compared with those of P43G. These comparisons reveal that little structure is formed in the tether regions of P43MG(apo), P43G(apo) and P43G(Ca) but a helical turn (S38-K41) appears to stabilize this part of the protein structure for P43MG(Ca). Several characteristic NOEs obtained from 2D and 3D NMR experiments support this novel helix. A similar, short helix exists in the crystal structure of calcium-bound wild-type calbindin D9k-but this is the first observation in solution for wild-type calbindin D9k or any of its mutants.  相似文献   

4.
Recent evidence from our laboratory demonstrates that platelets synthesize numerous proteins in a signal-dependent fashion (Pabla, R., Weyrich, A. S., Dixon, D. A., Bray, P. F., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1999) J. Cell Biol. 144, 175-184; Weyrich, A. S., Dixon, D. A., Pabla, R., Elstad, M. R., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5556-5561). Protein synthesis in platelets is controlled at the translational level; however, the mechanisms of regulation are not known. Here we demonstrate that translation initiation factors are redistributed to mRNA-rich areas in aggregated platelets, an event that induces protein synthesis. Interrogation of cDNA arrays revealed that platelet-derived mRNAs are primarily associated with the cytoskeletal core. In contrast, eukaryotic initiation factor 4E (eIF4E), the essential mRNA cap-binding protein that controls global translation rates, is localized in the membrane skeleton and soluble fraction of platelets, physically separated from most mRNAs. Platelet activation redistributes eIF4E to the cytoskeleton and increases interactions of eIF4E with mRNA cap structures. Redistribution of eIF4E to the mRNA-rich cytoskeleton coincides with a marked increase in protein synthesis, a process that is blocked when intracellular actin is disrupted. Additional studies demonstrated that beta(3) integrins are the primary membrane receptor that distributes eIF4E within the cell. These results imply that integrins link receptor-mediated pathways with mRNA-rich cytoskeletal domains and thereby modulate the organization of intracellular translational complexes. They also indicate that the functional status of eIF4E is regulated by its intracellular distribution.  相似文献   

5.
A novel calcium-binding protein (molecular weight 23,000-24,000, pI 5.3-5.5), which we term neurocalcin, was identified in bovine brain. Using calcium-dependent drug affinity chromatography ((S)-P-(2-aminoethyloxy)-N-[2-(4-benzyloxycarbonylpiperazinyl++ +)-1-(P- methoxybenzyl)ethyl]-N-methylbenzene-sulfonamide dihydrochloride, W-77, -coupled Sepharose 6B), we purified neurocalcin from bovine brain. The partial amino acid sequence of neurocalcin revealed it to be an as yet unidentified protein with three putative calcium binding sites (EF-hands). Further purification and sequence analysis demonstrated the presence of four isoprotein forms designated alpha, beta, gamma 1, and gamma 2. When the 165 sequenced residues of neurocalcin beta are compared with sequences of other proteins, neurocalcin beta has a 38.2% sequence homology with visinin and 45.5% with recoverin (Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H., and Miki, N. (1990) Neuron 2, 469-476; Dizhoor, A. M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K. A., Philipov, P. P., Hurley, J. B., and Stryer, L. (1991) Science 251, 915-918). Both visinin and recoverin are expressed specifically in retinal photoreceptors and are not found in brain. Unlike visinin and recoverin, neurocalcin is purified not only from retina but also from bovine brain. Our results suggest that neurocalcin is a recoverin-like protein expressed in bovine brain.  相似文献   

6.
It is shown that there are three parts on the potentiometric titration curves of isoionic solutions of poly(A) ascribed to the three protonated structures. Double-helical protonated structures are especially stable in isoionic solution. These parts on potentiometric curves are attributed to the single-stranded poly(A), to the completely protonated double-stranded poly(A+).poly(A+), and to the semiprotonated poly(A+).poly(A) structures: D, A, B forms of poly(A), respectively. pK0 values of these forms are calculated. The D form portion is found to be about 18% in isoionic solution, 40% in KCl solution (from 0.01 to 1.0 M), 40% in solution, containing 1.2 X 10(-3) M MgCl2 and 70% in 8 X 10(-4) M MgCl2 solution. The increase of MgCl2 concentration up to 8 X 10(-4) M leads to complete degradation of the double-helical structure. Only single-stranded D form exists in 5 X 10(-3) M MgCl2 solution. About 5-7% of all protons become inaccessible for titration in all solutions containing KCl and in the presence of small amounts of MgCl2. This phenomenon can not be explained by aggregation of poly(A), because all protons become accessible for titration in more concentrated MgCl2 solution when aggregation of poly(A) is significant and accompanied by the precipitation of sediment insoluble in NaOH. The supposition is made, that unprotonated double-stranded poly(A) can exist in salt-free solution at neutral pH. It is this form that is protonated with decrease of pH.  相似文献   

7.
The Synechocystis sp. PCC 6803 triple mutant D2R8 with V247M/A249T/M329I mutations in the D2 subunit of the photosystem II is impaired in Q(A) function, has an apparently mobile Q(A), and is unable to grow photoautotrophically. Several photoautotrophic pseudorevertants of this mutant have been isolated, each of which retained the original psbDI mutations of D2R8. Using a newly developed mapping technique, the site of the secondary mutations has been located in the open reading frame slr0399. Two different nucleotide substitutions and a deletion of about 60% of slr0399 were each shown to restore photoautotrophy in different pseudorevertants of the mutant D2R8, suggesting that inactivation of Slr0399 leads to photoautotrophic growth in D2R8. Indeed, a targeted deletion of slr0399 restores photoautotrophy in D2R8 and in other psbDI mutants impaired in Q(A) function. Slr0399 is similar to the hypothetical protein Ycf39, which is encoded in the cyanelle genome of Cyanophora paradoxa; in the chloroplast genomes of diatoms, dinoflagellates, and red algae; and in the nuclear genome of Arabidopsis thaliana. Slr0399 and Ycf39 have a NAD(P)H binding motif near their N terminus and have some similarity to isoflavone reductase-like proteins and to a subunit of the eukaryotic NADH dehydrogenase complex I. Deletion of slr0399 in wild type Synechocystis sp. PCC 6803 has no significant phenotypic effects other than a decrease in thermotolerance under both photoautotrophic and photomixotrophic conditions. We suggest that Slr0399 is a chaperone-like protein that aids in, but is not essential for, quinone insertion and protein folding around Q(A) in photosystem II. Moreover, as the effects of Slr0399 are not limited to photosystem II, this protein may also be involved in assembly of quinones in other photosynthetic and respiratory complexes.  相似文献   

8.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

9.
Two DNA fragments displaying ARS activity on plasmids in the yeast Yarrowia lipolytica have previously been cloned and shown to harbor centromeric sequences (P. Fournier, A. Abbas, M. Chasles, B. Kudla, D. M. Ogrydziak, D. Yaver, J.-W. Xuan, A. Peito, A.-M. Ribet, C. Feynerol, F. He, and C. Gaillardin, Proc. Natl. Acad. Sci. USA 90:4912-4916, 1993; and P. Fournier, L. Guyaneux, M. Chasles, and C. Gaillardin, Yeast 7:25-36, 1991). We have used the integration properties of centromeric sequences to show that all Y. lipolytica ARS elements so far isolated are composed of both a replication origin and a centromere. The sequence and the distance between the origin and centromere do not seem to play a critical role, and many origins can function in association with one given centromere. A centromeric plasmid can therefore be used to clone putative chromosomal origins coming from several genomic locations, which confer the replicative property on the plasmid. The DNA sequences responsible for initiation in plasmids are short (several hundred base pairs) stretches which map close to or at replication initiation sites in the chromosome. Their chromosomal deletion abolishes initiation, but changing their chromosomal environment does not.  相似文献   

10.
To examine the possibility that intravascular haemolysis may lead to intravascular coagulation we have compared the degree of fibrin deposition, as measured by levels of serum fibrinogen-fibrin degradation products (F.D.P.), in two different types of intravascular haemolysis associated with red cell fragmentation. F.D.P. levels in 56 patients with intravascular haemolysis secondary to prosthetic heart valves were compared with those in 18 patients who had microangiopathic haemolytic anaemia (M.H.A.) associated with malignant hypertension or renal disease. F.D.P. levels were raised in almost all the patients with M.H.A., and this group had significantly higher levels than any of the valve replacement groups. In contrast, in the prosthetic valve patients F.D.P. levels were usually normal and bore no relation to the degree of haemolysis. It is suggested that in the absence of other precipitating factors intravascular haemolysis will not initiate intravascular coagulation. In M.H.A., while the intravascular haemolysis appears to be a consequence of an underlying intravascular coagulation, it is likely that persistence of the coagulation disturbance is related more to factors such as small vessel damage than to the release of any thromboplastic substances from fragmented red cells.  相似文献   

11.
The heme of cytochrome P460 of Nitrosomonas europaea, which is covalently crosslinked to two cysteines of the polypeptide as with all c-type cytochromes, has an additional novel covalent crosslink to lysine 70 of the polypeptide [Arciero, D.M. & Hooper, A.B. (1997) FEBS Lett.410, 457-460]. The protein can catalyze the oxidation of hydroxylamine. The gene for this protein, cyp, was expressed in Pseudomonas aeruginosa strain PAO lacI, resulting in formation of a holo-cytochrome P460 which closely resembled native cytochrome P460 purified from N. europaea in its UV-visible spectroscopic, ligand binding and catalytic properties. Mutant versions of cytochrome P460 of N. europaea in which Lys70 70 was replaced by Arg, Ala, or Tyr, retained ligand-binding ability but lost catalytic ability and differed in optical spectra which, instead, closely resembled those of cytochromes c'. Tryptic fragments containing the c-heme joined only by two thioether linkages were observed by MALDI-TOF for the mutant cytochromes P460 K70R and K70A but not in wild-type cytochrome P460, consistent with the structural modification of the c-heme only in the wild-type cytochrome. The present observations support the hypothesized evolutionary relationship between cytochromes P460 and cytochromes c' in N. europaea and M. capsulatus[Bergmann, D.J., Zahn, J.A., & DiSpirito, A.A. (2000) Arch. Microbiol. 173, 29-34], confirm the importance of a heme-crosslink to the spectroscopic properties and catalysis and suggest that the crosslink might form auto-catalytically.  相似文献   

12.
The objective of this study was to identify, characterize, and examine oviductal secretory proteins (OSP) synthesized de novo by whole oviduct (WO), ampulla (A), and isthmic (I) tissue from ovariectomized (OVX), corn oil (CO)-, estrogen (E)-, progesterone (P)-, and E + P-treated gilts. Oviducts were collected from OVX gilts after CO, E, P, or E + P treatment for 11 consecutive days and tissue was incubated with 3H-leucine (3H-leu). Rates of 3H-leu incorporation into nondialyzable macromolecules by WO explants were greater (P less than 0.01) with E- compared to CO-, P-, or E + P-treated gilts and greater (P less than 0.05) by A explants with E- compared to CO-, P-, or E + P-treated gilts. An effect of location was noted, with A having a greater (P less than 0.01) rate of incorporation than WO or I. Conditioned culture medium was analyzed by one (1D)- and two-dimensional (2D) sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) and fluorography. Analyses by 1D-SDS-PAGE revealed three major E-dependent bands (335,000, 100,000, and 80,000 M(r)) in WO and A, and one (335,000 M(r)) in the I. A 20,000 M(r) band found in A was inhibited by E, while a 60,000 M(r) band found in the A was induced by P. Analyses by 2D-SDS-PAGE resolved major E-dependent bands 2 (100,000 M(r)) and 3 (80,000 M(r)) into basic and acidic 100,000 M(r) proteins and a 75,000-85,000 M(r) protein (pI less than 4), respectively, found in WO and A, but not in I. A basic 20,000 M(r) protein and an acidic 45,000 M(r) complex, both found in A, were inhibited by E. Gel filtration of culture medium revealed a high M(r) fraction (greater than 2 x 10(6)) that was induced by E and was 6.8-fold greater in medium from A than from I. This study clearly demonstrates that 1) WO and A tissue from E-treated gilts de novo synthesize and secrete three major proteins (basic 100,000, acidic 100,000, and 75,000-85,000 M(r)); 2) these E-dependent proteins are not found in I or with other treatment; 3) several protein complexes synthesized by A are inhibited by E treatment; and 4) a high M(r) fraction, produced primarily in the A, is induced or amplified by E.  相似文献   

13.
The placental glucocorticoid receptor (GR) is central to glucocorticoid signalling and for mediating steroid effects on pathways associated with fetal growth and lung maturation but the GR has not been examined in the guinea pig placenta even though this animal is regularly used as a model of preterm birth and excess glucocorticoid exposure. Guinea pig dams received subcutaneous injections of either vehicle or betamethasone at 24 and 12 hours prior to preterm or term caesarean-section delivery. At delivery pup and organ weights were recorded. Placentae were dissected, weighed and analysed using Western blot to examine GR isoform expression in nuclear and cytoplasmic extracts. A comparative examination of the guinea pig GR gene identified it is capable of producing seven of the eight translational GR isoforms which include GRα-A, C1, C2, C3, D1, D2, and D3. GRα-B is not produced in the Guinea Pig. Total GR antibody identified 10 specific bands from term (n = 29) and preterm pregnancies (n = 27). Known isoforms included GRγ, GRα A, GRβ, GRP, GRA and GRα D1-3. There were sex and gestational age differences in placental GR isoform expression. Placental GRα A was detected in the cytoplasm of all groups but was significantly increased in the cytoplasm and nucleus of preterm males and females exposed to betamethasone and untreated term males (KW-ANOVA, P = 0.0001, P = 0.001). Cytoplasmic expression of GRβ was increased in female preterm placentae and preterm and term male placentae exposed to betamethasone (P = 0.01). Nuclear expression of GRβ was increased in all placentae exposed to betamethasone (P = 0.0001). GRα D2 and GRα D3 were increased in male preterm placentae when exposed to betamethasone (P = 0.01, P = 0.02). The current data suggests the sex-specific placental response to maternal betamethasone may be dependent on the expression of a combination of GR isoforms.  相似文献   

14.
Two types of sialic acid-containing component are released from articular cartilage proteoglycan monomer (D1) treated with 0.05 M NaOH containing 1 M NaBH4. The smaller component, which has not been described before, contains galactosamine, glucosamine, galactose and sialic acid (Molar ratio 1:1:1:2). It is eluted from ECTEOLA-cellulose with low molarity (0.4 M) sodium formate and has Kav of 0.70 on Bio-gel P30. Its presence on the proteoglycan monomer was demonstrated at all stages of foetal and adult life.  相似文献   

15.
Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis.  相似文献   

16.
Proteins of the hsp70 family are abundant in mouse spermatogenic cells. These cells also synthesize relatively large amounts of a 70,000-molecular-weight protein (P70) that appears to be a cell-specific isoform of hsp70, the major heat-inducible protein (R.L. Allen, D.A. O'Brien, and E.M. Eddy, Mol. Cell. Biol. 8:828-832, 1988). In this study, proteins of unstressed and heat-stressed spermatogenic cells consisting of purified preparations of preleptotene, leptotene-zygotene, pachytene spermatocytes, and round spermatids were analyzed by two-dimensional polyacrylamide gel electrophoresis. Unstressed preleptotene and leptotene-zygotene spermatocytes contained little P70, whereas relatively large amounts of P70 were present in pachytene spermatocytes and round spermatids. Labeling studies showed that P70 was synthesized primarily in pachytene spermatocytes and that little synthesis occurred in round spermatids or in preleptotene and leptotene-zygotene stages of spermatogenesis. Synthesis of hsp70 was not detectable in unstressed cells but was induced in all stages of isolated germ cells following heat stress. These results indicate that P70 is expressed in a stage-specific manner during cell differentiation, whereas hsp70 is synthesized in response to stress in all populations of isolated spermatogenic cells examined.  相似文献   

17.
Human 6-phosphofructokinase (EC 2.7.1.11) exists in tetrameric isoenzymic forms composed of muscle (M), liver (L) and platelet (P) subunits, which are under separate genetic control. In the adult, the proportion of these subunits in different organs reflects the relative activity of glycolysis versus gluconeogenesis. To elucidate the developmental basis for the observed distribution, we investigated the isoenzymic transitions of phosphofructokinase in human foetuses (12-40 weeks' gestation) by using high-resolution chromatography and monoclonal antibodies. We studied skeletal muscle, heart, liver and brain because these organs show very different glycolytic fluxes and isoenzymic patterns in adult individuals. Our results demonstrate that there is no unique 'foetal' form of phosphofructokinase in humans, but all three loci are variably expressed in all foetal organs during early gestation. As development proceeds, muscle and liver isoenzyme patterns show dramatic changes, with disappearance of P and L subunits in muscle and transient reappearance of M and P subunits in liver; in contrast, phosphofructokinase isoenzymes change little in brain and heart. Most changes occur at mid-gestation and near term, and adult isoenzyme patterns are expressed at birth, indicating that organ differentiation is complete. These studies show that phosphofructokinase undergoes changes of isoenzyme patterns similar to, but not identical with, those of other multilocus isoenzyme systems of glycolysis. The observed changes probably reflect changing patterns of gene expression, with repression of some loci and activation of others.  相似文献   

18.
L-Ribulose-5-phosphate (L-Ru5P) 4-epimerase and L-fuculose-1-phosphate (L-Fuc1P) aldolase are evolutionarily related enzymes that display 26% sequence identity and a very high degree of structural similarity. They both employ a divalent cation in the formation and stabilization of an enolate during catalysis, and both are able to deprotonate the C-4 hydroxyl group of a phosphoketose substrate. Despite these many similarities, subtle distinctions must be present which allow the enzymes to catalyze two seemingly different reactions and to accommodate substrates differing greatly in the position of the phosphate (C-5 vs C-1). Asp76 of the epimerase corresponds to the key catalytic acid/base residue Glu73 of the aldolase. The D76N mutant of the epimerase retained considerable activity, indicating it is not a key catalytic residue in this enzyme. In addition, the D76E mutant did not show enhanced levels of background aldolase activity. Mutations of residues in the putative phosphate-binding pocket of the epimerase (N28A and K42M) showed dramatically higher values of K(M) for L-Ru5P. This indicates that both enzymes utilize the same phosphate recognition pocket, and since the phosphates are positioned at opposite ends of the respective substrates, the two enzymes must bind their substrates in a reversed or "flipped" orientation. The epimerase mutant D120N displays a 3000-fold decrease in the value of k(cat), suggesting that Asp120' provides a key catalytic acid/base residue in this enzyme. Analysis of the D120N mutant by X-ray crystallography shows that its structure is indistinguishable from that of the wild-type enzyme and that the decrease in activity was not simply due to a structural perturbation of the active site. Previous work [Lee, L. V., Poyner, R. R., Vu, M. V., and Cleland, W. W. (2000) Biochemistry 39, 4821-4830] has indicated that Tyr229' likely provides the other catalytic acid/base residue. Both of these residues are supplied by an adjacent subunit. Modeling of L-Ru5P into the active site of the epimerase structure suggests that Tyr229' is responsible for deprotonating L-Ru5P and Asp120' is responsible for deprotonating its epimer, D-Xu5P.  相似文献   

19.
Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion.  相似文献   

20.
When a dilute suspension of the mitochondrial fraction of rat liver homogenates was incubated with chemically synthesized succinyl-CoA, a product was rapidly formed which was retained at pH 3.9 on Dowex 50 (H+). Although its acid-base properties were indistinguishable from those of epsilon-aminolevulinic acid, the product did not form a pyrrole with acetylacetone, nor was its enzymatic formation dependent on added glycine. The enzyme which cleaved succinyl-CoA to the epsilon-aminolevulinic acid-like product was inhibited by phenylmethyl sulfonylfluoride. The first substance formed by the peptidase was the unstable thioester of succinic acid and cysteamine which underwent rearrangement to the more stable N-succinyl cysteamine above pH 4.0. It is apparent that the assay of epsilon-aminolevulinic acid synthetase (EC 2.3.1.37) by the ion-exchange method of Ebert et al. (Ebert, P.S., Tschudy, D.P., Choudhry, J.N. and Chirigos, M.A. (1970) Biochim. Biophys. Acta 208, 236--250) can yield erroneous results with succinyl-coenzyme A as substrate, especially when incubations are carried out for less than 25 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号