首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C. elegans gene unc-89 encodes a set of mostly giant polypeptides (up to 900 kDa) that contain multiple immunoglobulin (Ig) and fibronectin type 3 (Fn3), a triplet of SH3-DH-PH, and two protein kinase domains. The loss of function mutant phenotype and localization of antibodies to UNC-89 proteins indicate that the function of UNC-89 is to help organize sarcomeric A-bands, especially M-lines. Recently, we reported that each of the protein kinase domains interacts with SCPL-1, which contains a CTD-type protein phosphatase domain. Here, we report that SCPL-1 interacts with LIM-9 (FHL), a protein that we first discovered as an interactor of UNC-97 (PINCH) and UNC-96, components of an M-line costamere in nematode muscle. We show that LIM-9 can interact with UNC-89 through its first kinase domain and a portion of unique sequence lying between the two kinase domains. All the interactions were confirmed by biochemical methods. A yeast three-hybrid assay demonstrates a ternary complex between the two protein kinase regions and SCPL-1. Evidence that the UNC-89/SCPL-1 interaction occurs in vivo was provided by showing that over-expression of SCPL-1 results in disorganization of UNC-89 at M-lines. We suggest two structural models for the interactions of SCPL-1 and LIM-9 with UNC-89 at the M-line.  相似文献   

2.
To gain further insight into the molecular architecture, assembly, and maintenance of the sarcomere, we have carried out a molecular analysis of the UNC-96 protein in the muscle of Caenorhabditis elegans. By polarized light microscopy of body wall muscle, unc-96 mutants display reduced myofibrillar organization and characteristic birefringent "needles." By immunofluorescent staining of known myofibril components, unc-96 mutants show major defects in the organization of M-lines and in the localization of a major thick filament component, paramyosin. In unc-96 mutants, the birefringent needles, which contain both UNC-98 and paramyosin, can be suppressed by starvation or by exposure to reduced temperature. UNC-96 is a novel approximately 47-kDa polypeptide that has no recognizable domains. Antibodies generated to UNC-96 localize the protein to the M-line, a region of the sarcomere in which thick filaments are cross-linked. By genetic and biochemical criteria, UNC-96 interacts with UNC-98, a previously described component of M-lines, and paramyosin. Additionally, UNC-96 copurifies with native thick filaments. A model is presented in which UNC-96 is required in adult muscle to promote thick filament assembly and/or maintenance.  相似文献   

3.
In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B-dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.  相似文献   

4.
In Caenorhabditis elegans two M-line proteins, UNC-98 and UNC-96, are involved in myofibril assembly and/or maintenance, especially myosin thick filaments. We found that CSN-5, a component of the COP9 signalosome complex, binds to UNC-98 and -96 using the yeast two-hybrid method. These interactions were confirmed by biochemical methods. The CSN-5 protein contains a Mov34 domain. Although one other COP9 signalosome component, CSN-6, also has a Mov34 domain, CSN-6 did not interact with UNC-98 or -96. Anti-CSN-5 antibody colocalized with paramyosin at A-bands in wild type and colocalized with abnormal accumulations of paramyosin found in unc-98, -96, and -15 (encodes paramyosin) mutants. Double knockdown of csn-5 and -6 could slightly suppress the unc-96 mutant phenotype. In the double knockdown of csn-5 and -6, the levels of UNC-98 protein were increased and the levels of UNC-96 protein levels were slightly reduced, suggesting that CSN-5 promotes the degradation of UNC-98 and that CSN-5 stabilizes UNC-96. In unc-15 and unc-96 mutants, CSN-5 protein was reduced, implying the existence of feed back regulation from myofibril proteins to CSN-5 protein levels. Taken together, we found that CSN-5 functions in muscle cells to regulate UNC-98 and -96, two M-line proteins.  相似文献   

5.
Mutations in unc-96 or -98 cause reduced motility and a characteristic defect in muscle structure: by polarized light microscopy birefringent needles are found at the ends of muscle cells. Anti-paramyosin stains the needles in unc-96 and -98 mutant muscle. However there is no difference in the overall level of paramyosin in wild-type, unc-96, and -98 animals. Anti-UNC-98 and anti-paramyosin colocalize in the paramyosin accumulations of missense alleles of unc-15 (encodes paramyosin). Anti-UNC-96 and anti-UNC-98 have diffuse localization within muscles of unc-15 null mutants. By immunoblot, in the absence of paramyosin, UNC-98 is diminished, whereas in paramyosin missense mutants, UNC-98 is increased. unc-98 and -15 or unc-96 and -15 interact genetically either as double heterozygotes or as double homozygotes. By yeast two-hybrid assay and ELISAs using purified proteins, UNC-98 interacts with paramyosin residues 31-693, whereas UNC-96 interacts with a separate region of paramyosin, residues 699-798. The importance of surface charge of this 99 residue region for UNC-96 binding was shown. Paramyosin lacking the C-terminal UNC-96 binding region fails to localize throughout A-bands. We propose a model in which UNC-98 and -96 may act as chaperones to promote the incorporation of paramyosin into thick filaments.  相似文献   

6.
Myosins are molecular motors that convert chemical energy into mechanical work. Allosterically coupling ATP-binding, hydrolysis, and binding/dissociation to actin filaments requires precise and coordinated structural changes that are achieved by the structurally complex myosin motor domain. UNC-45, a member of the UNC-45/Cro1/She4p family of proteins, acts as a chaperone for myosin and is essential for proper folding and assembly of myosin into muscle thick filaments in vivo. The molecular mechanisms by which UNC-45 interacts with myosin to promote proper folding of the myosin head domain are not known. We have devised a novel approach, to our knowledge, to analyze the interaction of UNC-45 with the myosin motor domain at the single molecule level using atomic force microscopy. By chemically coupling a titin I27 polyprotein to the motor domain of myosin, we introduced a mechanical reporter. In addition, the polyprotein provided a specific attachment point and an unambiguous mechanical fingerprint, facilitating our atomic force microscopy measurements. This approach enabled us to study UNC-45-motor domain interactions. After mechanical unfolding, the motor domain interfered with refolding of the otherwise robust I27 modules, presumably by recruiting them into a misfolded state. In the presence of UNC-45, I27 folding was restored. Our single molecule approach enables the study of UNC-45 chaperone interactions with myosin and their consequences for motor domain folding and misfolding in mechanistic detail.  相似文献   

7.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

8.
Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45-related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.  相似文献   

9.
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.  相似文献   

10.
To further understand the assembly and maintenance of the muscle contractile apparatus, we have identified a new protein, UNC-98, in the muscle of Caenorhabditis elegans. unc-98 mutants display reduced motility and a characteristic defect in muscle structure. We show that the major defect in the mutant muscle is in the M-lines and dense bodies (Z-line analogs). Both functionally and compositionally, nematode M-lines and dense bodies are analogous to focal adhesions of nonmuscle cells. UNC-98 is a novel 310-residue polypeptide consisting of four C2H2 Zn fingers and several possible nuclear localization signal and nuclear export signal sequences. By use of UNC-98 antibodies and green fluorescent protein fusions (to full-length UNC-98 and UNC-98 fragments), we have shown that UNC-98 resides at M-lines, muscle cell nuclei, and possibly at dense bodies. Furthermore, we demonstrated that 1) the N-terminal 106 amino acids are both necessary and sufficient for nuclear localization, and 2) the C-terminal (fourth) Zn finger is required for localization to M-lines and dense bodies. UNC-98 interacts with UNC-97, a C. elegans homolog of PINCH. We propose that UNC-98 is both a structural component of muscle focal adhesions and a nuclear protein that influences gene expression.  相似文献   

11.
We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1–null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans.  相似文献   

12.
UNC-13 protein participates in regulating neurotransmitter release. In Drosophila melanogaster, proteasomal degradation controls UNC-13 levels at synapses. Function of the amino-terminal region of a 207 kDa form of Caenorhabditis elegans UNC-13 is unknown. Yeast two-hybrid and secondary yeast assays identified an F-box protein that interacts with this amino-terminal region. As F-box proteins bind proteins targeted for proteasomal degradation, this protein may participate in degrading a subset of UNC-13 proteins, suggesting that different forms of UNC-13 are regulated differently. Yeast assays also identified an exonuclease, a predicted splicing factor, and a protein with coiled-coil domains, indicating that UNC-13 may affect RNA function.  相似文献   

13.
Mutation of the Caenorhabditis elegans gene unc-89 results in disorganization of muscle A-bands. unc-89 encodes a giant polypeptide (900 kDa) containing a DH domain followed by a PH domain at its N terminus, which is characteristic of guanine nucleotide exchange factor proteins for Rho GTPases. To obtain evidence that the DH-PH region has activity toward specific Rho family small GTPases, we conducted an experiment using the yeast three-hybrid system. The DH-PH region of UNC-89 has exchange activity for RHO-1 (C. elegans RhoA), but not for CED-10 (C. elegans Rac), MIG-2 (C. elegans RhoG), or CDC-42 (C. elegans Cdc42). The DH domain alone has similar activity for RHO-1. An in vitro binding assay demonstrates interaction between the DH-PH region of UNC-89 and each of the C. elegans Rho GTPases. Partial knockdown of rho-1 in C. elegans adults showed a pattern of disorganization of myosin thick filaments similar to the phenotype caused by unc-89 (su75), a mutant allele in which all of the isoforms containing the DH-PH region are missing. Taken together, we propose a model in which the DH-PH region of UNC-89 activates RHO-1 GTPase for organization of myosin filaments in C. elegans muscle cells.  相似文献   

14.
15.
Titin (also known as connectin) is a giant filamentous protein that spans the distance between the Z- and M-lines of the vertebrate muscle sarcomere and plays a fundamental role in the generation of passive tension. Titin has been shown to bind strongly to myosin, making it tightly associated to the thick filament in the sarcomere. Recent observations have suggested the possibility that titin also interacts with actin, implying further functions of titin in muscle contraction. We show — using in vitro motility and binding assays — that native titin interacts with both filamentous actin and reconstituted thin filaments. The interaction results in the inhibition of the filaments' in vitro motility. Furthermore, the titin-thin filament interaction occurs in a calcium-dependent manner: increased calcium results in enhanced binding of thin filaments to titin and greater suppression of in vitro motility.  相似文献   

16.
Xu J  Gao J  Li J  Xue L  Clark KJ  Ekker SC  Du SJ 《遗传学报》2012,39(2):69-80
Myofibrillogenesis, the process of sarcomere formation, requires close interactions of sarcomeric proteins and various components of sarcomere structures. The myosin thick filaments and M-lines are two key components of the sarcomere. It has been suggested that myomesin proteins of M-lines interact with myosin and titin proteins and keep the thick and titin filaments in order. However, the function of myomesin in myofibrillogenesis and sarcomere organization remained largely enigmatic. No knockout or knockdown animal models have been reported to elucidate the role of myomesin in sarcomere organization in vivo. In this study, by using the gene-specific knockdown approach in zebrafish embryos, we carried out a loss-of-function analysis of myomesin-3 and slow myosin heavy chain 1 (smyhc1) expressed specifically in slow muscles. We demonstrated that knockdown of smyhc1 abolished the sarcomeric localization of myomesin-3 in slow muscles. In contrast, loss of myomesin-3 had no effect on the sarcomeric organization of thick and thin filaments as well as M- and Z-line structures. Together, these studies indicate that myosin thick filaments are required for M-line organization and M-line localization of myomesin-3. In contrast, myomesin-3 is dispensable for sarcomere organization in slow muscles.  相似文献   

17.
The proper folding of many proteins can only be achieved by interaction with molecular chaperones. The molecular chaperone UNC-45B is required for the folding of striated muscle myosin II. However, the precise mechanism by which it contributes to proper folding of the myosin head remains unclear. UNC-45B contains three domains: an N-terminal TPR domain known to bind Hsp90, a Central domain of unknown function, and a C-terminal UCS domain known to interact with the myosin head. Here we used fluorescence titrations methods, dynamic light scattering, and single-molecule atomic force microscopy (AFM) unfolding/refolding techniques to study the interactions of the UCS and Central domains with the myosin motor domain. We found that both the UCS and the Central domains bind to the myosin motor domain. Our data show that the domains bind to distinct subsites on the myosin head, suggesting distinct roles in forming the myosin−UNC-45B complex. To determine the chaperone activity of the UCS and Central domains, we used two different methods: 1), prevention of misfolding using single-molecule AFM, and 2), prevention of aggregation using dynamic light scattering. Using the first method, we found that the UCS domain is sufficient to prevent misfolding of a titin mechanical reporter. Application of the second method showed that the UCS domain but not the Central domain prevents the thermal aggregation of the myosin motor domain. We conclude that while both the UCS and the Central domains bind the myosin head with high affinity, only the UCS domain displays chaperone activity.  相似文献   

18.
The proper folding of many proteins can only be achieved by interaction with molecular chaperones. The molecular chaperone UNC-45B is required for the folding of striated muscle myosin II. However, the precise mechanism by which it contributes to proper folding of the myosin head remains unclear. UNC-45B contains three domains: an N-terminal TPR domain known to bind Hsp90, a Central domain of unknown function, and a C-terminal UCS domain known to interact with the myosin head. Here we used fluorescence titrations methods, dynamic light scattering, and single-molecule atomic force microscopy (AFM) unfolding/refolding techniques to study the interactions of the UCS and Central domains with the myosin motor domain. We found that both the UCS and the Central domains bind to the myosin motor domain. Our data show that the domains bind to distinct subsites on the myosin head, suggesting distinct roles in forming the myosin−UNC-45B complex. To determine the chaperone activity of the UCS and Central domains, we used two different methods: 1), prevention of misfolding using single-molecule AFM, and 2), prevention of aggregation using dynamic light scattering. Using the first method, we found that the UCS domain is sufficient to prevent misfolding of a titin mechanical reporter. Application of the second method showed that the UCS domain but not the Central domain prevents the thermal aggregation of the myosin motor domain. We conclude that while both the UCS and the Central domains bind the myosin head with high affinity, only the UCS domain displays chaperone activity.  相似文献   

19.
20.
UNC-51 and UNC-14 are required for the axon guidance of many neurons in Caenorhabditis elegans. UNC-51 is a serine/threonine kinase homologous to yeast Atg1, which is required for autophagy. The binding partner of UNC-51, UNC-14, contains a RUN domain that is predicted to play an important role in multiple Ras-like GTPase signaling pathways. How these molecules function in axon guidance is largely unknown. Here we observed that, in unc-51 and unc-14 mutants, UNC-5, the receptor for axon-guidance protein Netrin/UNC-6, abnormally localized in neuronal cell bodies. By contrast, the localization of many other proteins required for axon guidance was undisturbed. Moreover, UNC-5 localization was normal in animals with mutations in the genes for axon guidance proteins, several motor proteins, vesicle components and autophagy-related proteins. We also found that unc-5 and unc-6 interacted genetically with unc-51 and unc-14 to affect axon guidance, and that UNC-5 co-localized with UNC-51 and UNC-14 in neurons. These results suggest that UNC-51 and UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5, and that UNC-5 uses a unique mechanism for its localization; the functionality of UNC-5 is probably regulated by this localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号