首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A ribonuclease isolated from barley malt roots exhibited characteristics that conformed to those of RNase I (EC 3.1.27.1). It differed from RNase I from barley leaves and barley seeds in its action on polynucleotides and on 3′,5′-dinucleoside monophosphates, and from barley seed RNase I in its optimum pH. Gel electrophoresis indicated that the enzyme was present in the embryo, roots, shoot and endosperm of germinating barley. The enzyme showed pH optimum at 5.0, isoclectric pH at 4.5, a thermal optimum of 50°, and an apparent molocular weight of 19 000.  相似文献   

3.
Sopanen T 《Plant physiology》1976,57(6):867-871
A peptidase hydrolyzing the dipeptide Ala-Gly optimally at pH 8 to 9 was purified about 3500-fold from germinated grains of barley (Hordeum vulgare L.). According to disc electrophoresis in the presence of sodium dodecyl sulfate, the preparation was about 90% pure.  相似文献   

4.
An α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on CM-cellulofine/Fractogel EMD SO3, Sephacryl S-200 HR and TSK gel Phenyl-5 PW, and preparative isoelectric focusing. The enzyme was homogenous by SDS-PAGE. The molecular weight of the enzyme was estimated to be 86,000 based on its mobility in SDS-PAGE and 80,000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 8.3. The enzyme readily hydrolyzed maltose, malto-oligosaccharides, and α-1,4-glucan, but hydrolyzed polysaccharides more rapidly than maltose. The Km value decreased with an increase in the molecular weight of the substrate. The value for maltoheptaose was about 4-fold lower than that for maltose. The enzyme preferably hydrolyzed amylopectin in starch, but also readily hydrolyzed nigerose, which has an α-1,3-glucosidic linkage and exists as an abnormal linkage in the structure of starch. In particular, the enzyme readily hydrolyzed millet starch from germinating seeds that had been degraded to some extent.  相似文献   

5.
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes catalyzing the conversion of various aldehydes to the corresponding acids using the coenzymes NAD+ or NADP+. While mammalian ALDHs have been studied extensively, the non-mammalian ALDHs, notably those of teleostean origin, remain relatively unexplored. In our previous study on grass carp (Ctenopharyngodon idellus) liver ALDH, a significant amount of the ALDH activity did not adsorb on the alpha-cyanocinnamate Sepharose column which binds ALDH2. The objective of the present study was to purify the ALDH which accounts for this unadsorbed activity. Further chromatography on Affi-gel Blue agarose, followed by size exclusion on Superdex 200 successfully isolated this aldehyde-oxidizing activity. The protein was a homo-tetramer with a subunit molecular mass of 58 kDa. N-terminal sequencing of the first 21 amino acid residues, followed by blastp analysis on the NCBI database revealed the protein as antiquitin. The optimal pH for the oxidation of acetaldehyde was 9.5. At this pH, the Vmax and the Km values for acetaldehyde were 1.95 U/mg and 2.00 mM, respectively.  相似文献   

6.
alpha-Glucosidases (EC 3.2.1.20) are recognized as important in starch degradation during cereal seed germination. A barley (Hordeum vulgare) alpha-glucosidase expressed in Pichia pastoris was cultured in flasks; however, the yield was low necessitating the use of multiple batches. Problems arose because of significant variation between batches. We solved these problems by switching to a fermentation system producing a sufficient quantity of a uniform sample. Here we present the expression and purification of a recombinant alpha-glucosidase grown under fermentation conditions. We also present the results of experiments to characterize the thermostability, pH optimum, and substrate specificity of the recombinant enzyme. The optimal pH for the hydrolysis of maltose by recombinant alpha-glucosidase is between 3.5 and 4.5. The thermostability of recombinant alpha-glucosidase was determined at pH 4, where activity is optimal, and at pH 5 and 6, which better mimic the conditions used to convert barley starch to fermentable sugars during industrial processing. The results indicate the enzyme is most thermolabile at pH 4. However, the enzyme is protected from heat inactivation at pH 4 by high concentrations of sucrose. The purified enzyme hydrolyzed maltose three times more rapidly than nigerose and 20 times more rapidly than trehalose and isomaltose. Concentrations of maltose greater than 20 mM inhibited maltose hydrolysis. This is the first report of substrate inhibition for any alpha-glucosidase. The results indicate that the only significant difference between the recombinant enzyme and the previously characterized barley isoforms was the V(max) for maltose hydrolysis.  相似文献   

7.
alpha-Glucosidase (EC 3.2.1.20) was purified to homogeneity from logarithmically growing cells of Saccharomyces carlsbergensis. The purification involved the following steps: (a) ammonium sulfate fractionation; (b) Sephadex G-100 chromatography; (c) DEAE-cellulose chromatography; and (d) hydroxylapatite chromatography. This procedure gave a preparation judged to be greater than 98% pure by Na-DodSO4-polyacrylamide gel electrophoresis. The enzyme was shown to be a monomer of 63 000 daltons by gel filtration on Sephacryl S-200 under native conditions and by polyacrylamide gel electrophoresis under denaturing conditions. The Km values of the enzyme for the substrates maltose and p-nitrophenyl alpha-D-glucoside were found to be 1.66 X 10(-2) and 3.1 X 10(-4) M, respectively. The corresponding Vmax value for maltose was 44.8 X 10(-6) mol min(-1) mg(-1) and that for p-nitrophenyl alpha-D-glucoside was 134 X 10(-6) mol min-1 mg-1. The pH optimum for the purified enzyme was found to be between pH 6.7 and 6.8. The enzyme has an absolute anomeric specificity for alpha-glycosidic linkages and appears to recognize a glucosyl residue in alpha linkage on the nonreducing end of its substrate. For the strain used in this study, which carries the MAL 6 locus, only a single form of the enzyme was detected.  相似文献   

8.
E Satoh  T Uchimura  T Kudo    K Komagata 《Applied microbiology》1997,63(12):4941-4944
An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics and hydrolysis product from soluble starch were different from those of the extracellular raw-starch-hydrolyzing alpha-amylase of strain 148. The deduced amino acid sequence of the intracellular alpha-amylase was similar to the sequences of the mature forms of extracellular liquefying alpha-amylases from Bacillus strains, although the intracellular alpha-amylase did not contain a signal peptide. No homology between the intracellular and extracellular alpha-amylases of S. bovis 148 was observed.  相似文献   

9.
10.
An alkaline 5-phosphodiesterase (5-PDE) from barley (Hordeum distichum) malt sprouts was partially purified by thermal treatment and acetone precipitation to diminish phosphomonoesterase (PME) activity. 5-PDE was purified 40-fold to a specific activity of 30 U mg–1 protein with a final yield of about 32%. With synthetic substrate, the enzyme had an optimum pH of 8.9, maximum activity at 70 °C over 10 min, and a Km of 0.26 mM. The partially purified enzyme was activated by 10 mM Mg2+ up to 168% of the original activity, while Zn2+, Mn2+ and Cu2+ ions, chelating agent (EDTA) and NaN3 (1–10 mM), and 5-ribonucleotides (1–5 mM) were inhibitory. Final enzyme preparation was stable over 8 d at 4 °C), at 70 °C for up to 120 min and without loss of activity over 90 d at –18 °C.  相似文献   

11.
Acid alpha-glucosidase [EC 3.2.1.3] was purified from pig liver by a procedure including Sephadex G-100 affinity chromatography. Electrophoresis on SDS-polyacrylamide gel of the purified enzyme indicated the presence of two components with molecular weights of 73K and 64K. The two components of the enzyme were completely separated, in reasonable yield, by chromatography on a DEAE-5PW column. Both components catalyzed the hydrolysis of the alpha-1,4 and alpha-1,6 linkages of glycogen, maltose, isomaltose, dextrin, and a synthetic glucoside at acid pH. The pH optima of both components were 4.3 for maltase and glucoamylase, and 4.8 for isomaltase and dextrinase. But as to the activity on 4MU-alpha-Glc, the pH optimum of the larger component was 4.8 and that of the smaller component 5.3. The Km values of both components for 4MU-alpha-Glc, maltose, glycogen, isomaltose, and dextrin were 1.0 X 10(-4) M, 9.1 X 10(-3) M, 16.7 mg/ml, 6.7 X 10(-2) M, and 12.5 mg/ml, respectively. Erythritol, Tris, and turanose inhibited the two components competitively. The Ki values of the larger component were 5.0 X 10(-2) M, 13.3 X 10(-3) M, and 3.2 X 10(-3) M, and those of the smaller component were 2.5 X 10(-2) M, 6.1 X 10(-3) M, and 4.7 X 10(-3) M, for erythritol, Tris, and turanose, respectively.  相似文献   

12.
嗜热栖热菌HB8耐热α—葡萄糖苷酶的提纯和性质   总被引:4,自引:0,他引:4  
  相似文献   

13.
A particulate NMN glycohydrolase of rabbit spleen was solubilized with Triton X100 and purified approximately 100-fold. The enzyme was shown to have a pH maximum of 6.5, a Km of 0.25 mM, a Vmax of 5.3 mumol/min/mg protein, an activation energy of 7.9 kcal/mol, and a molecular weight of approximately 400,000. Both of the purified and the particulate enzymes exhibited identical catalytic properties with respect to substrate specificity, activation energy, pH profile and exchange reaction with nicotinic acid, except that the purified enzyme was highly activated with Triton X100 as compared with the particulate enzyme; it appears that the purified enzyme possesses the same catalytic properties as the enzyme present in the tissue and that solubilization does not significantly alter the native protein. In addition to catalytic activity with NMN, the rabbit spleen enzyme catalyzed an irreversible hydrolysis with NAD and NADP, exhibiting catalyzing activity ratios of NMN:NAD:NADP = 1.00:1.45:0.44 and Vmax/Km ratios of 1.00:1.7:2.3, respectively. These ratios of activity remained constant throughout purification of the enzyme and no separation of these activities was detected. Mutually competitive inhibition of the enzyme with Ki values similar to Km, and identical rates of thermal denaturation of the enzyme and activity-pH profiles with NMN or NAD indicated the hydrolysis of the C-N glycosidic linkage of the pyridine nucleotides to be catalyzed by the same enzyme. The enzyme was less specific for the purine structure of the substrate dinucleotides but was stereospecific for the glycosidic linkage cleaved. Nicotinamide riboside, the nicotinic acid analogs and the reduced forms were not hydrolyzed. A linear noncompetitive inhibition of NMN hydrolysis with nicotinamide indicated an ordered Uni-Bi mechanism in which nicotinamide was the first product released from the enzyme. A property that the rabbit spleen enzyme appears to share with other NAD glycohydrolases is the transglycosidation reaction. The ratio of transglycosidation reaction vs. hydrolysis catalyzed by the enzyme in the presence of NMN and nicotinic acid indicated that the enzyme could function as a primary transglycosidase rather than a hydrolytic enzyme in vivo.  相似文献   

14.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable alpha-amylase activity. Here, a alpha-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal alpha-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55 degrees C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-alpha-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50 degrees C.  相似文献   

15.
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The alpha-amylase activity on potato starch was optimal at pH 5.5 and 80 degrees Celsius. In the presence of Ca(2+), the alpha-amylase had residual activity of more than 92% after 1h of incubation at 70 degrees Celsius. The alpha-amylase did not lose any activity in the presence of phytate (a selective alpha-amylase inhibitor) at concentrations as high as 10mM, rather it retained 90% maximal activity after 1h of incubation at 70 degrees Celsius. EGTA and EDTA were strong inhibitory substances of the enzyme. The alpha-amylase hydrolyzed soluble starch at 80 degrees Celsius, with a K(m) of 3.05mgml(-1) and a V(max) of 7.35Uml(-1). The molecular weight of alpha-glucosidase was approximately 45kDa, as determined by SDS-PAGE. The enzyme activity was optimal at pH 6.5-7.5 and 55 degrees Celsius. Phytate did not inhibit G. thermodenitrificans HRO10 alpha-glucosidase activity, whereas pCMB was a potent inhibitor of the enzyme. The alpha-glucosidase exhibited Michaelis-Menten kinetics with maltose at 55 degrees Celsius (K(m): 17mM; V(max): 23micromolmin(-1)mg(-1)). Thin-layer chromatography studies with G. thermodenitrificans HRO10 alpha-amylase and alpha-glucosidase showed an excellent synergistic action and did not reveal any transglycosylation catalyzed reaction by the alpha-glucosidase.  相似文献   

16.
The alpha-amylase excreted by the antarctic bacterium Alteromonas haloplanctis was purified and the corresponding amy gene was cloned and sequenced. N- and C-terminal amino acid sequencing were used to establish the primary structure of the mature A. haloplanctis alpha-amylase which is composed of 453 amino acids with a predicted Mr of 49,340 and a pI of 5.5. Three Ca2+ ions are bound per molecule and its activity is modulated by chloride ions. Within the four consensus sequences, Asp-174, Glu-200, and Asp-264 are the proposed catalytic residues. The psychrotrophic A. haloplanctis alpha-amylase is characterized by a high amylolytic activity at low temperatures, a reduced apparent optimal temperature, and typical thermodynamic activation parameters A. haloplanctis alpha-amylase has also a low thermal stability as demonstrated by the temperature effect on both activity and secondary structure. It is suggested that structure flexibility and lower sensitivity of secondary structure to temperature variations in the low temperature range are the main structural adaptations of the psychrotrophic enzyme. The unusual stacking of small amino acids around the catalytic residues is proposed as a factor inducing active site flexibility and concomitant high activity of the enzyme at low temperatures.  相似文献   

17.
A Butyrivibrio fibrisolvens amylase gene was cloned and expressed by using its own promoter on the recombinant plasmid pBAMY100 in Escherichia coli. The amylase gene consisted of an open reading frame of 2,931 bp encoding a protein of 976 amino acids with a calculated Mr of 106,964. In E. coli(pBAMY100), more than 86% of the active amylase was located in the periplasm, and TnphoA fusion experiments showed that the enzyme had a functional signal peptide. The B. fibrisolvens amylase is a calcium metalloenzyme, and three conserved putative calcium-binding residues were identified. The amylase showed high sequence homology with other alpha-amylases in the three highly conserved regions which constitute the active centers. These and other conserved regions were located in the N-terminal half, and no similarity with any other amylase was detected in the remainder of the protein. Deletion of approximately 40% of the C-terminal portion of the amylase did not result in loss of amylolytic activity. The B. fibrisolvens amylase was identified as an endo-alpha-amylase by hydrolysis of the Phadebas amylase substrate, hydrolysis of gamma-cyclodextrin to maltotriose, maltose, and glucose and the characteristic shape of the blue value and reducing sugar curves. Maltotriose was the major initial hydrolysis product from starch, although extended incubation resulted in its hydrolysis to maltose and glucose.  相似文献   

18.
A beta-lactamase gene was isolated for the first time from a terrestrial subsurface environment using a combined cultivation and direct cloning strategy. The gene, discovered from 24 m below land surface in Hawaii, was most similar to the penicillinase from Bacillus licheniformis. The resistance gene was confirmed via subcloning and its minimum inhibitory concentration values were measured against several test beta-lactam antibiotics. This study extends the knowledge on resistance to antimicrobials, which may help the efforts to minimize their future threat.  相似文献   

19.
A periplasmic binding protein essential for high-affinity transport of the C4-dicarboxylates malate, succinate and fumarate across the cytoplasmic membrane of the purple photosynthetic bacterium Rhodobacter capsulatus has been purified to homogeneity and some of its ligand-binding properties characterized. The protein was not produced in a Tn5 insertion mutant unable to transport C4-dicarboxylates under aerobic conditions in the dark. Wild-type DNA corresponding to the location of the transposon insertion site was subcloned and a 1.5 kb section sequenced. A complete open reading frame of 999 bp was identified that encoded a 333-residue protein (DctP) with a molecular weight of 36,128 with a 26-residue amino-terminal signal peptide. The identify of this protein with the purified dicarboxylate-binding protein and the position of the predicted signal peptide cleavage site was confirmed by N-terminal sequencing. No significant homology with other proteins was detected in database searches. A GC-rich region of dyad symmetry was located 7 bp downstream of the dctP translational stop codon. This structure may be of significance in regulating the relative abundance of DctP and other dct gene products which comprise the high-affinity dicarboxylate transport system in this bacterium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号