首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W Debinski  O Kuchel  N T Buu  G Thibault 《Peptides》1988,9(5):1101-1105
Atrial natriuretic factor (ANF) was investigated in the rat spinal cord and hypothalamus using two radioimmunoassays. ANF was also quantified in both tissues of Spontaneously Hypertensive Rats and Dahl rats. Spinal cord and hypothalamus were found to be immunoreactive to proANF and its near-NH2- or near-COOH-terminal fragments. A major part of the extracted ANF was a COOH-terminal peptide smaller than or the same as ANF (Ser99-Tyr 126). SHR had higher hypothalamic and spinal cord ANF concentrations than Wistar Kyoto rats, while the Dahl salt-sensitive animals exhibited an increase in spinal cord ANF when compared with the Dahl salt-resistant group. The data suggest that spinal cord may produce ANF locally with processing similar to that in hypothalamus. Changes in ANF concentrations occurring during the course of hypertension remain to be further investigated.  相似文献   

2.
Binding sites for atrial natriuretic factor (ANF) were studied in kidneys and adrenal glands of 17 week old male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) normotensive rats by quantitative autoradiography using 125I-ANF-28. In kidney, 125I-ANF-28 binding sites were found in high concentrations in glomeruli and in much lower concentrations in the renal papilla. In adrenal gland, 125I-ANF-28 binding sites were highly localized to the zona glomerulosa and were of moderate density in the inner cortical regions. ANF binding sites did not occur in the adrenal medulla. The maximum binding capacity (Bmax) of 125I-ANF-28 was reduced by 50% in the kidney glomeruli of SHRs compared to WKY controls. In contrast, the affinity constant (Ka) for 125I-ANF-28 was elevated by 100% in kidney glomeruli of SHRs. There were no significant strain differences in values for Bmax or Ka for 125I-ANF-28 binding in the adrenal zona glomerulosa. These findings suggest that the natriuretic and diuretic actions of ANF within kidney glomeruli may be compromised in adult SHR rats and these alterations may contribute to the development and maintenance of hypertension in rats of this strain.  相似文献   

3.
The levels of atrial natriuretic factor (ANF) and the mRNA for ANF were measured in the left ventricles of Dahl salt-sensitive (S) and salt-resistant (R) rats. ANF and ANF mRNA were both much higher in ventricular tissue of newborn rats of both strains compared to young adults, which represents the normal developmental pattern. There was no strain difference between S and R when the rats were young (1.5 months of age), but in older animals (8.5 months of age), when S rats were markedly hypertensive, there was a 5- to 10-fold increase in both left ventricular ANF and left ventricular ANF mRNA in S, but not R, rats. Atrial ANF mRNA was not similarly increased in hypertensive S rats. The ANF levels present in ventricles could not be accounted for by contamination with plasma ANF. Moreover, HPLC analysis of the forms of ANF in ventricles of newborn and hypertensive S rats showed that immunoreactive ANF in ventricles was present mainly in the same precursor form found in atria and not the shorter peptide form found in plasma. Northern blot analysis showed that ANF mRNA for atria and ventricles were the same size. It is concluded that in the S rat the heart left ventricle responds to hypertension by increasing production and storage of ANF.  相似文献   

4.
The results of electron microscopic studies of the synthesis and secretion of atrial natriuretic factor (ANF) in right atrial cardiomyocytes of spontaneously hypertensive rats (SHR) and the corresponding normotensive controls are presented. Enhanced secretory activity in cardiomyocytes of SHR has been revealed. The role of enhanced ANF secretion in the origin of arterial hypertension is discussed. It is suggested that enhanced ANF secretion can be attributed to increased ANF demand in BP elevation, changes in the renal function in hypertensive subjects or genetic defect in the excretory renal function in SHR.  相似文献   

5.
In order to assess possible roles of atrial natriuretic factor (ANF) in spontaneously hypertensive rats (SHR), we examined the content of immunoreactive-ANF in plasma, the atria, hypothalamus and pons of SHR and Wister Kyoto (WKY) rats by radioimmunoassay at different stages of age. With the progression of hypertension, plasma concentration of ANF increased whereas it decreased in the atria in SHR. This suggests ANF is secreted in response to hypertension. On the other hand, at hypothalamus and pons, ANF content was significantly higher in SHR than in WKY rats. This finding suggests possible involvement of ANF in the central regulation of blood pressure.  相似文献   

6.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P<0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P<0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

7.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P less than 0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P less than 0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

8.
We investigated the effect of sodium chloride and adrenergic agents on the release of atrial natriuretic factor (ANF) using working heart-lung preparations from Dahl salt-hypertension sensitive (S) and Dahl salt-hypertension resistant (R) rats. High concentrations of NaCl moderately increased ANF release, but this was attributed to small increases in left atrial pressure rather than to a direct effect of NaCl on ANF release; S and R rats responded similarly. Neither isoproterenol (beta 1 + beta 2 agonist) nor clonidine (alpha 2 agonist) had any effect on ANF release in the heart-lung preparation. In contrast, phenylephrine (alpha 1 agonist) stimulated ANF release. This could not be accounted for by change in atrial pressure and appeared to be a direct effect. S and R rats both released ANF in response to phenylephrine, but there was a modest tendency for hypertensive S rats to release more ANF than normotensive R rats, which is consistent with previous data on mechanically induced (atrial stretch) ANF release in these strains.  相似文献   

9.
A reduction in the density of small arterioles (rarefaction) has been reported in several vascular beds of the spontaneously hypertensive rat (SHR). There have been conflicting reports on the existence of rarefaction in the pial vasculature of SHR. In this study, we determined whether there was rarefaction of pial arterioles in several models of hypertension. We studied SHR; two-kidney, one-clip Goldblatt hypertensive rats; deoxycorticosterone-salt hypertensive rats; and Dahl salt-sensitive rats fed high salt diet. The two groups of normotensive controls were Wistar--Kyoto rats and Dahl salt-sensitive rats fed low salt diet. The duration of hypertension was about 2 months. Density of first-, second-, third-, and fourth-order arterioles was determined by counting the number of vessels from enlarge photographs. We also measured the lengths of segments of the arterioles. We did not observe any evidence of rarefaction of arterioles in the pial vasculature in any of the hypertensive groups of rats. We conclude that (i) rarefaction of arterioles does not occur in the pial microvasculature after approximately 2 months of hypertension and (ii) rarefaction of pial arterioles does not account for abnormalities in the cerebral circulation of hypertensive rats such as protection of the blood-brain barrier or changes in autoregulation of cerebral blood flow.  相似文献   

10.
ANF-like peptide(s) in the peripheral autonomic nervous system   总被引:7,自引:0,他引:7  
The recent demonstration of the atrial natriuretic factor (ANF) within the brain has been extended in the present study by the additional localization of ANF-like activity in the peripheral nervous structures. Using a sensitive radioimmunoassay, it was possible to detect ANF-like immunoreactive peptide(s) in crude and chromatographically separated extracts of parasympathetic rat ganglia. The partially purified ANF-like peptide exhibited a biological action similar to cardiac ANF. This finding supports a possible involvement of ANF in the regulation of both, central and peripheral neuronal activities.  相似文献   

11.
Exaggerated natriuresis in experimental hypertension   总被引:1,自引:0,他引:1  
The exaggerated natriuretic response to intravenous isotonic saline volume expansion in conscious spontaneous hypertensive rats (SHR), compared to normotensive Wistar-Kyoto rats (WKY), is associated with an exaggerated inhibition of renal nerve activity. Following bilateral renal denervation, the natriuresis was significantly attenuated in SHR but unaffected in WKY. Thus, the exaggerated natriuretic response to intravenous isotonic saline in SHR is dependent on their enhanced inhibition of renal nerve activity. Conscious Dahl salt-sensitive rats, on either low or high salt diet, did not exhibit an exaggerated natriuretic response to intravenous isotonic saline volume expansion which may be explained by their known impairment of cardiopulmonary baroreceptor reflex mediated suppression of efferent sympathetic nerve activity during intravenous volume expansion. Conscious hypertensive DOCA-NaCl rats exhibited an exaggerated natriuretic response to oral but not to intravenous isotonic saline volume expansion, suggesting differences in gastrointestinal absorption of isotonic saline. It is concluded that enhanced inhibition of efferent renal sympathetic nerve activity via cardiopulmonary baroreceptor reflex activation contributes to the exaggerated natriuretic response to intravenous isotonic saline volume expansion in certain models of experimental hypertension.  相似文献   

12.
The relationship between ANF activity and hypertension was determined by measuring ANF atrial content and vascular reactivity in two different models: spontaneous hypertensive rats (SHR) and renal hypertensive rats (RHR). Atrial extracts and aortic strips were prepared from hypertensive and normotensive animals. Relaxant activities of extracts, synthetic ANF and nitroglycerin were assayed on superfused aortic strips previously contracted by norepinephrine. ANF atrial content was statistically significantly lower in both models of hypertension, presumably by increased ANF release into the circulation which results in depletion of tissue storage sites. Vascular subsensitivity to ANF and nitroglycerin was found in both models of hypertension. Diminished ANF vascular reactivity in hypertension could be due to receptor down-regulation and/or to a decrease in the ability of cGMP to induce relaxation.  相似文献   

13.
BACKGROUND: Essential (multigenic) hypertension is a complex multifactorial disease whose genetic etiology has not been unraveled on a major locus-effect investigative paradigm. As with other complex genetic diseases, applying an interacting loci paradigm could be critical in the elucidation of genetic determinants. Having defined the alpha1 Na,K-ATPase (alpha1NK) as a hypertension susceptibility gene in Dahl salt-sensitive (Dahl S) rats, we determined whether alphaINK interacts with another renal epithelial Na transporter to increase susceptibility to salt-sensitive hypertension. We focused on alpha1NK and Na,K,2Cl-cotransporter (NKC) as an a priori candidate interacting gene pair because they comprise a functionally linked Na transport system in renal thick ascending limb of Henle (TALH) epithelial cells and exhibit altered function in prehypertensive Dahl S rats in contrast to Dahl salt-resistant normotensive (Dahl R) rats. MATERIAL AND METHOD: Cosegregation analysis of alphaNK and NKC loci was done in a (Dahl S x Dahl R) F2 cohort characterized for blood pressure by radiotelemetry using the D2mghII microsatellite marker in the alpha1NK gene and the D3mit3 microsatellite marker close to the NKC gene (NKC/D3mit3 locus). Single locus and digenic analyses were performed to establish the individual and interactive genetic contribution to salt-sensitive hypertension. Molecular analysis was then done to support the NKC gene as the likely candidate gene interacting with alpha1NK in Dahl salt-sensitive hypertension pathogenesis. RESULTS: Compared with respective single locus analysis, digenic analysis of 96 F2 (Dahl S x Dahl R) hybrid male rats revealed cosegregation of alpha1NK and NKC/D3mit3 loci as interacting pair with salt-sensitive hypertension with markedly increased significance for systolic (one-way ANOVA p = 10(-6)), diastolic (p = 10(-5)), and mean arterial (p = 10(-6)) blood pressures. Concordantly, two-way ANOVA detected interaction between alpha1NK and NKC loci in determining the levels of systolic (p = 0.004), diastolic (p = 0.008), and mean arterial (p = 0.006) pressures. To unravel potential NKC molecular dysfunction(s) involved in hypertension pathogenesis, we investigated putative differences between Dahl S and Dahl R rats in nucleotide sequence and isoform gene expression of the renal-specific Na,K,2Cl-cotransporter. Molecular analysis revealed an inversion of alternatively spliced NKC-isoform ratios (4B:4A:4F) between Dahl S and Dahl R prehypertensive kidneys supported by four mutations in intron-3 immediately upstream to alternatively spliced exons 4B, 4A, and 4F. No nucleotide changes were detected within the aminoacid encoding exons of NKC. CONCLUSIONS: Altogether, these current data and previous characterization of the role of the Q276L alpha1NK molecular variant in Dahl S hypertension provide cumulative compelling evidence that alpha1NK and NKC/D3mit3 loci interact to increase susceptibility to hypertension in Dahl S rats and that NKC is the likely candidate gene that interacts with alpha 1NK. More importantly, the data substantiate gene interaction as an operative mechanism in multigenic hypertension.  相似文献   

14.
High concentration of atrial natriuretic peptide (99-126) (ANP) receptors were localized by quantitative autoradiography in superior cervical and stellate ganglia from young and adult Wistar Kyoto (WKY) rats. ANP increased cyclic GMP formation in stellate ganglia from adult rats. Both young and adult spontaneously hypertensive rats (SHR) had a much lower number of ANP receptors in the sympathetic ganglia. In spite of low receptor concentration, the cyclic GMP response to ANP in SHR was unchanged. These results suggest the existence of physiologically active ANP receptors in the rat sympathetic ganglia. These receptors may also be involved in the pathophysiology of spontaneous hypertension.  相似文献   

15.
To determine the role of body fluid volume in the chronic hypotensive effect of atrial natriuretic factor (ANF), spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats were infused with the peptide (Arg 101-Tyr 126) at a rate of 100 ng/h/rat for 5 days. Blood pressure (BP) was decreased from 176 +/- 4 to 133 +/- 3 mmHg in the SHR group 4 days after ANF infusion was initiated, whereas no changes were observed in ANF-infused WKY animals. Starting 5 days after the infusion began, body fluid measurements revealed no differences in plasma, blood and extracellular fluid volumes or in interstitial spaces. BP and plasma ANF concentrations were determined in another set of experiments before, during and after chronic ANF infusion. BP declined from 169 +/- 3 to 133 +/- 5 mmHg in SHR 5 days after the infusion commenced, but returned to basal values by day 10 or 11. Plasma ANF was significantly higher in SHR than in WKY rats throughout the observation period. However, there were no discernible changes in this parameter in ANF-infused SHR compared to non-infused SHR. A 3-fold rise in plasma ANF was noted in infused WKY rats at day 3 only. It is concluded that the chronic hypotensive effect of ANF in hypertensive animals is not related to changes in either body fluid volume or distribution. Moreover, the finding that chronic ANF infusion reduces BP in SHR without altering its plasma levels suggests a rapid ANF turnover.  相似文献   

16.
This study investigated the release of prostacyclin (PGI2) and thromboxane A2 (TXA2) from the aortic walls of various experimental hypertensive rats, e.g. spontaneously hypertensive rats (SHR), Dahl salt-sensitive (Dahl S) rats, deoxycorticosterone (DOCA)-salt hypertensive rats and renovascular (2-kidney, 1-clip (2K1C) and 1-kidney, 1-clip (1K1C] hypertensive rats. The PGI2 generation was increased significantly in these hypertensive models, irrespective of the hypertensive mechanisms, when they developed established hypertension. Dahl S rats, having an impaired PGI2 production on a low salt diet, restored PGI2 generating capacity to the control level of Dahl salt-resistant rats when they were fed a high salt diet and developed salt-induced hypertension. On the other hand, the TXA2 generation in the vascular walls was enhanced particularly in rat models for genetic hypertension, and this system was unaltered in the models for secondary hypertension, e.g. DOCA-salt and renovascular hypertension. Thus, it is suggested that the elevation of blood pressure is associated with an increase in vascular PGI2 production, and that the increased vascular TXA2 production is a characteristic feature of genetic hypertension.  相似文献   

17.
Angiotensin II (ANG II) and vasopressin (AVP) are two powerful vasoconstrictors, and atrial natriuretic peptide (ANP) is a potent vasorelaxant. The changes in the density or affinity of binding sites for these agents that may alter target organ responsiveness in hypertension are reviewed. ANG II binding in mesenteric arteries was unaltered in one-kidney, one-clip (1-K, 1-C) and in 2-K, 1-C hypertensive rats, while in deoxycorticosterone acetate (DOCA)-salt hypertensive rats ANG II binding to blood vessels was significantly increased. A role of mineralocorticoids to increase the number of vascular ANG II sites in some hypertensive models is suggested. In spontaneously hypertensive rats (SHR) ANG II receptors were increased in young rats in the prehypertensive stage with respect to Wistar-Kyoto (WKY) control rats, but normal in older rats. AVP binding in the vasculature of hypertensive rats was uniformly decreased in inverse correlation to plasma AVP levels, but vascular responsiveness to AVP was exaggerated. Inositol trisphosphate production by blood vessels of SHR in response to AVP showed that increased AVP receptor-coupled phospholipase C activity may mediate in part the exaggerated pressor response in spite of reduced or normal density of receptors for vasoconstrictor peptides. Vascular ANP sites in 2-K, 1-C, 1-K,1-C, and DOCA-salt hypertensive rats varied inversely with plasma concentrations of ANP. Normal densities of ANP receptors in saralasin-sensitive 2-K, 1-C hypertensive rats correlated with ANP sensitivity, while saralasin-insensitive 2-K, 1-C hypertensive rats, which did not respond to ANP, had significantly decreased density of ANP vascular receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The possibility that a forced exercise regimen might prevent the development of hypertension induced in rats both by renal encapsulation and chronic administration of deoxycorticosterone acetate (DOCA) and NaCl has been studied. In renal hypertensive rats, forced exercise at 0.4 to 1.25 miles/day, 7 days/wk for 16-22 wk failed to prevent the development of hypertension and cardiomegaly and reduced renal concentrating ability accompanying the hypertension. In DOCA-treated rats (10 mg/wk), forced exercise at 0.4 and 0.8 mile/day, 7 days/wk for 16 wk also failed to prevent both the development of hypertension and cardiomegaly. A review of data of others reveals that exercise may delay the development of hypertension in both Dahl salt-sensitive and spontaneously hypertensive (SHR) rats and may modestly reduce the maximal level of pressure attained. Of the four models of hypertension studied to date in rats, the Dahl salt-sensitive strain appears to be the one that responded best to exercise, although blood pressure eventually reached that of sedentary controls.  相似文献   

19.
The relationship between circulating atrial natriuretic polypeptide (ANP) and blood pressure was studied in inbred Dahl salt-sensitive (S) and inbred Dahl salt-resistant (R) rats. Two month old S and R rats raised on normal rat chow had only small differences in blood pressure and no difference in plasma ANP levels. In contrast, when 6-month-old rats also raised on normal chow were studied, S had markedly elevated blood pressure and a 4 fold increase in plasma ANP compared to R. Similar strain differences in blood pressure and plasma ANP could be induced in young rats by feeding them diets high in salt. In six week old S and R rats which had been fed high salt diet for 3 weeks the S rats showed higher blood pressure and plasma ANP than R rats. The high plasma ANP levels seen in the hypertensive S rats were interpreted to be a response to hypertension and not a cause of hypertension. There was no qualitative strain difference in the plasma ANP molecule as assessed by reverse phase high pressure liquid chromatography.  相似文献   

20.
The Dahl salt-sensitive rat, a model for salt-induced hypertension, develops hypovitaminosis D during high salt intake, which is caused by loss of protein-bound vitamin D metabolites into urine. We tested the hypothesis that high dietary cholecalciferol (5- and 10-fold standard) would increase plasma 25-hydroxycholecalciferol (25-OHD(3)) concentration (indicator of vitamin D status) of salt-sensitive rats during high salt intake. Salt-sensitive rats were fed 0.3% salt (low salt, LS), 3% salt (HS), 3% salt and 7.5 microg cholecalciferol/d (HS-D5), or 3% salt and 15 microg cholecalciferol/d (HS-D10) and sacrificed at week 4. Plasma 25-OHD(3) concentrations of the two groups of HS-D rats were similar to that of LS rats and more than twice that of HS rats. Urinary cholecalciferol metabolite content of HS-D rats was more than seven times that of HS rats. Systolic blood pressures of the hypertensive HS and HS-D rats did not significantly differ, whereas LS rats were not hypertensive. We conclude that high dietary cholecalciferol increases plasma 25-OHD(3) concentration, but does not attenuate the hypertension of salt-sensitive rats during high salt intake. Low salt intake may be necessary to both maintain optimal vitamin D status and prevent hypertension in salt-sensitive individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号