共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— [U-14 C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14 C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14 C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14 C in the free sugars decreased from 24 to 3 per cent, while the 14 C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14 C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate. 相似文献
2.
—During anoxia induced by the administration of potassium cyanide, [U-14C]glucose was injected intraperitoneally into adult mice and they were decapitated at 5, 15 and 30 min after the injection. After freeze-drying in vacuo, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, cerebellar hemisphere, caudate nucleus, thalamus, hypothalamus and medulla oblongata were investigated (by macroautoradiography and GLC separation) and compared with those obtained under normal conditions. (1) During anoxia, autoradiographical densities in the thalamus and medulla oblongata were higher than that in the cerebral neocortex and caudate nucleus. (2) Among specific radioactivities (d.p.m./μmol) of free amino acids, alanine gave the highest value during anoxia, except in the cerebellar hemisphere and hypothalamus at 5 min and the medulla oblongata at 30 min. (3) During anoxia, the specific radioactivities of alanine and glycine in each brain region did not significantly decrease at 15 and 30 min compared with those under normal conditions. During anoxia, the specific radioactivity of glutamate + glutamine in the cerebellar hemisphere and hypothalamus did not significantly decrease compared with the normal conditions, while that of GABA, aspartate + asparagine and glutamate + glutamine in the cerebral neocortex, caudate nucleus, thalamus and medulla oblongata showed an increase. (4) The percentage decrease of glutamate + glutamine and aspartate + asparagine at 5 and 15 min was highly significant in the cerebral neocortex and caudate nucleus. 相似文献
3.
By macroautoradiography and by GLC separation, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, hippocampus, thalamus and hypothalamus were investigated. (1) The autoradiographical densities in the thalamus, cerebral neocortex and hippocampus measured with a microdensitometer were higher than that in the hypothalamus at 5 min after subcutaneous injection. At 180 min, densities in the cerebral neocortex, hippocampus and hypothalamus were higher than that in thalamus. (2) The free amino acid levels determined by GLC varied with each brain region. (3) The specific radioactivity (d.p.m./μmol) of alanine in each brain region was higher than that of the other amino acids at 5 min after the injection. The specific radioactivity of GABA in the brain regions was clearly higher than that of (glutamate + glutamine), (aspartate + asparagine) and glycine at 5 and 15 min. (4) The autoradiographical data were in good agreement with the chemical data at 5 min but were different at 180 min. (5) Variations in specific radioactivity of each free amino acid among brain regions at 5 min were influenced greatly by existing free amino acid concentrations in each region. 相似文献
4.
A. Sinichkin S. Sterri P. D. Edminson K. L. Reichelt E. Kvamme 《Journal of neurochemistry》1977,29(3):425-431
Abstract— Following intracranial and intraperitoneal injection of acetyl- l -[U-14 C]aspartate into mice about 5% and 0.7% of the radioactivity, respectively, was recovered from the brain after 30 min.
On chromatographic separation of the cationic and anionic compounds on a Dowex 50 column, the former fraction contained about 60% of the radioactivity, predominantly as labelled aspartate and glutamate. The anionic compounds, containing 20% of the labelled compounds, were fractionated in several chromatographic systems and resolved into a great variety of labelled peptidic compounds of which five acetyl-[U14 -C]aspartyl peptides, containing two to four amino acids, were purified. One of these, acetyl-aspartyl glutamine, has not previously been found in brain. 相似文献
On chromatographic separation of the cationic and anionic compounds on a Dowex 50 column, the former fraction contained about 60% of the radioactivity, predominantly as labelled aspartate and glutamate. The anionic compounds, containing 20% of the labelled compounds, were fractionated in several chromatographic systems and resolved into a great variety of labelled peptidic compounds of which five acetyl-[U
5.
S. J. Potashner 《Journal of neurochemistry》1978,31(1):177-186
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals. 相似文献
6.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14 C]oleic and [1-14 C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14 C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14 C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides. 相似文献
7.
Abstract— [2-14 C]Propionate injected into rats was metabolized into [14 C]glucose and 14 C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14 C]propionate formed from [U-14 C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14 C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14 C]glucose showed that [2-14 C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult. 相似文献
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [
8.
METABOLISM OF d-[U-14 C]RIBOSE IN RAT TISSUES 总被引:1,自引:0,他引:1
Abstract— d -[U-14 C]Ribose injected subcutaneously into the rat enters the blood, liver and brain. At 30 min after injection 40-70 per cent of the radioactivity in the brain was found in amino acids and only 2-6 per cent in free sugars. In contrast, free sugars (mainly glucose) and carboxylic acids accounted for most of the radioactivity in liver and blood. Evidence for the entry of [U-14 C]ribose into the brain was obtained by intracarotid or intravenous injection of [U-14 C]ribose after interrupting the blood supply to the liver and kidney. Under these conditions the radioactivity in the brain was found in amino acids, carboxylic acids and ribose; no significant amount of [14 C]glucose was detected in brain or heart. It is concluded that ribose is metabolized directly in vivo in the brain. d -[U-14 C]Ribose was metabolized also by brain slices in vitro to form 14 C-labelled amino acids and carboxylic acids; the rate was equivalent to the utilization of 0.65 μ mol of ribose/g/h. The specific radioactivity of glutamine and of γ -aminobutyrate was similar to or higher than that of glutamate in the brain. These results are discussed in the context of metabolic compartments. 相似文献
9.
From the total lipid extract of ncrve-ending membranes or the homogenate of cerebral cortex a hydrophobic protein fraction binding L-[14C]glutamic acid was separated by chromatography on Sephadex LH20. This protein could only be partially separated from the [14C]GABA-binding protein and from the lipids that are present in the fraction; however, it was demonstrated that both amino acids bind to different sites. The saturation of the binding showed a high (Kd1= 0.3μM), a medium (Kd, = 5 μM) and a low (Kd, = 55 μM) affinity binding site. The high affinity binding site had a binding capacity of 0.53 nmol/mg of protein and was highly stereoselective for the L-enantiomer. The binding of L-[14C]glutamic acid was not inhibited by GABA, was slightly inhibited by glycine and glutamine and was strongly inhibited in a progressive order by DL-a-methylglutamic acid, L-nuciferine, L-aspartic acid and L-glutamic acid diethyl ester. These results are compared with those previously obtained with the L-glutamic acid-binding protein isolated from crustacean muscle. The stereoselectivity of the binding and the possible role of this protein in synaptic transmission are discussed. 相似文献
10.
—The incorporation of [1-14C]acetate into unesterified fatty acids and into the fatty acids of neutral glycerides and of phospholipids has been measured in rat cerebral cortex in vivo. The most rapid incorporation is seen in the unesterified fatty acids which have a turnover time of 5-6 min. It is suggested that unesterified fatty acids are precursors to neutral glycerides and phospholipids rather than being derived from them by lipase activity. 相似文献
11.
Abstract— Changes in morphology and in transformations of [U-14 C]glucose and [1-14 C]acetate into amino acids of the brain cortex were followed on the Sth, 10th and 21st days after production of mechanical lesions and compared with control tissue. In the experimental tissue, proliferation of astroglia and reduction of the number of neurons had taken place. On the 10th day, accumulation of mitochondria and of some gliofilaments in the cytoplasm of astroglia was observed. On the 21st day, the gliofilaments occupied a substantial portion of the astroglial cytoplasm and the mitochondria were reduced in number and compressed to the cell membrane. Incorporation of 14 C from acetate into amino acids was substantially increased on the 10th day (up to 240% with respect to controls) and normalized again on the 21st day. Incorporation of [14 C]glucose into amino acids decreased somewhat during the experimental period. It has been proposed that the proliferation of astrocytes and their ultrastructural changes may account for the increased transformation of [14 C]acetate into amino acids, in particular into glutamine which is formed from the small glutamate pool. 相似文献
12.
Abstract— The effects of carbamylcholine on incorporation of [1-14 C]arachidonate into the glycerolipids in mouse brain synaptosome-rich and microsomal fractions were examined at 1, 3 and 10 min after intracerebral injection of the labeled precursor. When carbamylcholine was included with the labeled arachidonate, there was a decrease in the proportion of labeled fatty acid incorporated into the phospholipids. Among the phospholipids in the synaptosome-rich fraction, a decrease in incorporation of radioactivity into diacyl-glycerophosphoinositols and diacyl-glycerophosphocholines was observed at 1 and 3 min after injection. A decrease in labeling of diacyl-glycerophosphoethanolamines and diacyl-glycerophosphocholines in the microsomal fraction was observed at 3 and 10 min after injection. The decrease in phospholipid labeling was marked by an increase in labeling of diacylglycerols which was observed initially in the synaptosome-rich fraction, but also in the microsomal fraction at later time periods. Other lipid changes included an increase in triacylglycerol labeling which was found in the synaptosome-rich fraction and an increase in phosphatidic acid labeling which was found in the microsomal fraction. Results of the in vivo study have demonstrated changes in brain lipid metabolism during carbamylcholine stimulation. Furthermore, these changes appear to be initiated mainly in the synaptosome-rich fraction. 相似文献
13.
Abstract— Uptake systems for [14 C]aspartate and [14 C]glutamate were characterized in two distinct synaptosomal fractions solated from rabbit retina. The P, synaptosomal fraction was highly enriched in large photoreceptor cell synaptosomes but contained very few conventional sized synaptosomes from amacrine, horizontal or bipolar cells. In contrast, the P2 synaptosomal fraction contained numerous conventional sized synaptosomes and was virtually free of photoreceptor cell synaptosomes. Both synaptosomal fractions took up [14 C]aspartate and [14 C]glutamate with high affinity [ K m = 1–2μM). Uptake characteristics were similar to those described for high affinity uptake systems in brain synaptosomes, i.e. saturation kinetics; temperature and Na+ dependence. Although the presence of a high affinity uptake system is not a definitive criterion for demonstration of functional neurotransmitter systems, it is an important and necessary prerequisite and can thus be considered as supportive evidence for the involvement of asparate and glutamate in neurotransmission in rabbit retina. 相似文献
14.
METABOLISM OF [14 C]LEUCINE AND [14 C]ACETATE IN SENSORIMOTOR CORTEX, THALAMUS, CAUDATE NUCLEUS AND CEREBELLUM OF THE CAT 总被引:1,自引:0,他引:1
Abstract— —In the head of the caudate nucleus, the relative specific activity of glutamine (glutamic acid specific activity = 1) was less than 1 with intravenous [14 C]leucine as the tracer metabolite. This is in contrast to observations made in other brain areas (cortex, hippocampus, thalamus, pons, and medulla) where the relative specific activity of glutamine was greater than 1. This is also in contrast to findings when [l-14 C]acetate was utilized as the tracer; under these conditions, in all brain areas, including the head of the caudate nucleus, the relative specific activity of glutamine was greater than 1. It is inferred that the differences in metabolism of [14 C]leucine and [14 C]acetate in the head of the caudate from that in other brain areas reflect differences in compartmentation of the glutamate-glutamine system. 相似文献
15.
16.
INCORPORATION OF [14 C]N-ACETYL NEURAMINIC ACID INTO BRAIN GLYCOPROTEINS AND GANGLIOSIDES IN VIVO1 总被引:2,自引:0,他引:2
—Intracerebrally administered [14C]N-acetyl neuraminic acid was incorporated into brain glycoproteins and gangliosides. Incorporation into both classes of compounds was markedly inhibited by acetoxycycloheximide but incorporation into the soluble glycoproteins of the nerve-ending fraction was inhibited least of all. In contrast to glucosamine and fucose, a relatively small proportion of the injected [14C]NANA was incorporated. 相似文献
17.
D. F. Matheson 《Journal of neurochemistry》1969,16(2):215-223
Abstract—
- 1 The conditions for incorporation of [14C]glycine in vitro into proteins in the sciatic nerve of chickens have been studied and found to be similar to those of rat nerve.
- 2 Its incorporation decreases, however, linearly with age.
- 3 The content of RNA and of DNA of peripheral nerve and the RNA/DNA ratio alter linearly with age.
- 4 There is also a linear relationship between the specific radioactivity of the protein extract and the RNA content of the nerve.
- 5 There is a linear decline with age in the specific radioactivity of the protein fraction when expressed against the DNA content.
- 6 A linear relationship exists between the logarithm of the specific radioactivity and the length of the femur.
18.
THE EFFECT OF MORPHINE ADMINISTRATION ON THE INCORPORATION OF [14 C]LEUCINE INTO PROTEIN IN CELL-FREE SYSTEMS FROM RAT BRAIN AND LIVER 总被引:1,自引:0,他引:1
—Ribosomes isolated from the brains of rats treated with morphine in vivo were less active in promoting the incorporation of [14C]leucine into protein than ribosomes isolated from untreated rats. This inhibitory phenomenon was studied in relation to dose of morphine, time after drug administration and the pharmacological responses of hypothermia and analgesia. The inhibition of [14C]leucine incorporation into brain proteins in vitro was transient after a single injection of morphine and dose-dependent, and related to the hypothermic response, but not prevented by keeping the rats at an ambient temperature which prevented hypothermia. The incorporation of [14C]leucine into protein by liver ribosomes was also inhibited in preparations from morphine treated rats. 相似文献
19.
Abstract— The formation of histamine in brain was studied in mice injected with l -[14 C]-histidine (ring 2-14 C) intravenously (i.v.) or intracerebrally; [14 C]histamine appeared rapidly and exhibited a rapid rate of turnover. Drugs known to block various pathways of histamine catabolism were tested for effects on brain–[14 C]histamine and [14 C]-methyl-histamine in mice given (1) [14 C]histamine i.v., (2) [14 C]histamine intracerebrally, and (3) l -[14 C]histidine i.v. Blood-borne histamine did not enter brain; brain histamine was formed locally by decarboxylation of histidine Methylhistamine did cross the blood-brain barrier. Methylation was the major route of histamine catabolism in mouse brain and some of the methylhistamine formed was destroyed by monoamine oxidase. No evidence for catabolism by the action of diamine oxidase was found. 相似文献
20.
The metabolism of the polyamine precursors arginine and ornithine was studied in maturing and vernalised seeds of Picea abies (L.) Karst. (Norway spruce) in feeding experiments. Incorporation of radioactivity from these 14 C-labelled amino acids into liberated CO2 , amino acids, polyamines, proteins and cell wall fractions, as well as polyamine levels were determined in embryos and megagametophytes. Ornithine and especially arginine decarboxylation was more active in the embryo than in the megagametophytic cells, and vernalisation increased arginine metabolism more than it increased ornithine metabolism. Both precursors were metabolised to each other, to other amino acids, and to polyamines. The only polyamine in which radioactivity incorporated was free putrescine, showing either a slow synthesis or a high degradation rate of spermidine and spermine in maturing spruce seeds. The putrescine level was approximately 10 times higher in the embryo than in the megagametophytic tissues, whereas spermidine and spermine levels were almost the same in both tissues. The label from arginine and ornithine was also incorporated into proteins as amino acids and post-translationally as polyamines. Higher radioactivity was seen in the small ≤14-kDa polypeptides. Protein hydrolysates of the embryo and the megagametophytic tissues contained spermidine and spermine and their degradation product 1,3-diaminopropane (DAP), suggesting that polyamines may play a role in the accumulation of seed storage protein and in the maturation of spruce seeds. 相似文献