首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The polyprotein precursor to the envelope glycoproteins of mouse mammary tumor virus was investigated by using subcellular fractionation procedures, pactomycin mapping techniques, tunicamycin inhibition of glycosylation, and endo-beta-N-acetyl glucosaminidase H-catalyzed removal of glycosylated residues in order to characterize the biosynthesis and processing of the precursor. The results suggest that the precursor (Pr73env) is synthesized on the rough endoplasmic reticulum as a transmembrane protein, with the carboxyl terminus remaining on the cytoplasmic side. The apoprotein as an estimated molecular weight of 60,000 and acquires five core oligosaccharide units during synthesis. Cleavage of the precursor precedes the secondary glycosylation steps and therefore probably occurs before transport to the plasma membrane. However, a minor population of Pr73env containing complex oligosaccharides was also found in the plasma membrane. The order of the glycoproteins in the precursor, as determined by pactomycin mapping, in NH2-gp52-gp36-COOH.  相似文献   

3.
The relationship of protein glycosylation to the externalization of glucocorticoid inducible alpha1-acid glycoprotein and mouse mammary tumor virus glycoproteins was examined in M1.54, a clonal population of mouse mammary tumor virus-infected rat hepatoma cells. Multiple freeze-thaw of isolated microsomes revealed that while alpha 1-acid glycoprotein is carried through the cell as a soluble component of vesicles, extracellular viral glycoproteins are initially membrane-associated. At concentrations of tunicamycin that specifically inhibited N-linked protein glycosylation, alpha 1-acid glycoprotein fractionated between the cellular and extracellular compartments. Thus, approximately one half of the newly synthesized, nonglycosylated (22,000 Mr) alpha 1-acid glycoprotein was rapidly secreted with kinetics similar to its glycosylated counterpart (release half-time of 60 min), while the remaining species first localized in an undefined intracellular compartment prior to its slow secretion (release half-time of 24 h). The same distribution of nonglycosylated alpha 1-acid glycoprotein was observed at various absolute levels of polypeptide, suggesting that this was not due simply to the saturation of an efficient secretory pathway at high polypeptide levels. In contrast to alpha 1-acid glycoprotein, no labeled viral antigens were released by tunicamycin-treated M1.54, while a nonglycosylated viral precursor glycopolyprotein was expressed intracellularly. Taken together, these results suggest that carbohydrate attachment strongly regulates the externalization of both alpha 1-acid glycoprotein and mouse mammary tumor virus species, which represent two distinct classes of extracellular glycoproteins.  相似文献   

4.
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment.  相似文献   

5.
《The Journal of cell biology》1986,103(6):2323-2331
Glucocorticoid hormones can regulate the posttranslational maturation of mouse mammary tumor virus (MTV) precursor polyproteins in M1.54, a stably infected rat hepatoma cell line. We have used complement- mediated cytolysis to recover variants of M1.54 that fail to express MTV cell surface glycoproteins in a hormone-regulated manner (Firestone, G.L., and K.R. Yamamoto, 1983, Mol. Cell. Biol., 3:149- 160). One such clonal isolate, CR4, is similar to wild-type with respect to synthesis of MTV mRNAs, production of the MTV glycoprotein precursor (gPr74env) and a glycosylated maturation product (gp51), and hormone-induced processing of two MTV phosphoproteins. In contrast, three viral cell surface glycoproteins (gp78, gp70, and gp32) and one extracellular species (gp70s), which derive from gPr74env in glucocorticoid-treated wild-type cells, fail to appear in CR4. CR4 showed no apparent alterations in proliferation rate, cell shape, or expression of total functional mRNA and bulk glycoproteins. We conclude that the genetic lesion in CR4 defines a highly selective hormone- regulated glycoprotein maturation pathway that alters the fate of a restricted subset of precursor species.  相似文献   

6.
We have previously shown that glucocorticoids regulate the trafficking and processing of mouse mammary tumor virus (MMTV) proteins in viral-infected M1.54 rat hepatoma cells. To examine the role of intracellular membrane integrity on MMTV protein maturation, brefeldin A (BFA) was utilized to disrupt membrane flow between the endoplasmic reticulum and Golgi. Immunoprecipitation and immunofluorescence microscopy revealed that in the presence of dexamethasone, BFA inhibited the proteolytic processing, cell surface delivery, and externalization of MMTV glycoproteins. Glycosidase digestion and inhibitors of protein glycosylation confirmed that the observed differences in apparent sizes of MMTV glycoprotein products are due to BFA-induced changes in oligosaccharide processing. BFA treatment inhibited the proteolytic processing of the MMTV phosphoprotein precursor, which normally associates with the cytoplasmic face of intracellular membranes. Similarities in salt extraction efficiency revealed that BFA did not affect the membrane affinity of the uncleaved phosphorylated precursor. In a complementary approach, proteolytic processing of the phosphorylated polyprotein did not occur in glucocorticoid-treated HTC cells transfected with a mutant MMTV provirus encoding a normal phosphorylated precursor, but which express a truncated MMTV glycoprotein missing its transmembrane domain and cytoplasmic tail. These results suggest that the MMTV glycoproteins and phosphoproteins may interact at a late step in the transport pathway in a manner required for their mutual processing in response to glucocorticoids and establishes the importance of functional interactions with intracellular membranes for maturation of the cytoplasmic MMTV phosphoproteins.  相似文献   

7.
We have documented previously that glucocorticoid hormones modulate the posttranslational localization of cell surface mouse mammary tumor virus (MMTV) glycoproteins in the viral-infected M1.54 rat HTC hepatoma cell line. To determine whether glucocorticoids affect the trafficking of individually synthesized MMTV glycoproteins, HTC cells were transfected with a constitutively expressed MMTV glycoprotein gene lacking the viral phosphoprotein and polymerase genes. This construct also allows equivalent levels of MMTV glycoproteins to be compared in the presence or absence of glucocorticoids. Indirect immunofluorescence and immunoprecipitation of radiolabeled cells revealed that in transfected cells the transmembrane MMTV glycoproteins are efficiently expressed, transported to the cell surface, and proteolytically cleaved in the presence or in the absence of the synthetic glucocorticoid dexamethasone. Cell surface immunoprecipitation of [35S]methionine-labeled cells showed that the level of plasma membrane gp78 appeared to be stimulated 2-fold after dexamethasone treatment, even though fluorescence-activated cell sorting revealed no discernible change in the total concentration of cell surface MMTV glycoproteins. Analysis of oligosaccharide side chain maturation through a pulse-chase radiolabeling revealed that the rate of rough endoplasmic reticulum-Golgi transport was essentially identical in dexamethasone-treated and untreated transfected cells and was similar to that observed in dexamethasone-treated M1.54 cells. Thus, in contrast to viral-infected hepatoma cells, mostly constitutive cellular machinery mediates the trafficking and maturation of cell surface MMTV glycoproteins expressed outside of the proviral context. Taken together, our results suggest that the glucocorticoid-stimulated synthesis of nonglycosylated viral components may contribute to or be responsible for the regulated trafficking of MMTV glycoproteins observed in viral-infected rat hepatoma cells.  相似文献   

8.
Cells stably infected with Rous sarcoma virus were treated with tunicamycin to prevent the glycosylation of the precursor (pr92gp) to the two viral envelope glycoproteins gp85 and gp35. Pretreatment of the cells for 4 h with the antibiotic resulted in a 90% reduction in [3H]mannose incorporation into total cellular glycoproteins, intracellular viral glycoproteins, and released virus particles. Protein synthesis and virus particle formation were not significantly affected by the treatment. A new polypeptide made in the presence of the drug was identified by immunoprecipitation of pulse-labeled cell lysates with monospecific anti-gp85 and anti-gp35 sera. This polypeptide, migrating on sodium dodecyl sulfate-polyacrylamide gels as a molecule of 62,000 daltons (pr62), contained no [3H]mannose, was labeled with [S35]methionine and [3H]arginine, could not be chased into the higher-molecular-weight glycosylated form, and contained the same [3H]arginine tryptic peptides as pr92gp. The unglycosylated pr62 was still detectable 2 h after the pulse labeling of the cells. The lack of glycosylation of pr62 did not seem to reduce its stability. No clear evidence for the incorporation of this molecule or its cleavage products into viral particles could be obtained. To code for an envelope polypeptide of 62,000 daltons, only about 1,500 nucleotides or 15% of the total coding capacity of the virus are needed.  相似文献   

9.
Post-translational modifications of retrovirus gag gene-encoded polyproteins include proteolytic cleavage, phosphorylation, and glycosylation. To study the sequence of these events, we labeled JLS-V9 cells chronically infected with Rauscher murine leukemia virus in pulse-chase experiments with the radioactive precursors [35S]methionine, [14C]mannose, [3H]glucosamine, and [32P]phosphate. Newly synthesized gag polyproteins which incorporated label, and the modified products derived from them, were identified by immunoprecipitation of cell lysates with anti-p30 rabbit serum, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Pulse-chase experiments were carried out in the presence as well as in the absence of tunicamycin, an inhibitor of glycosylation. Among the three major polyproteins synthesized in the absence of tunicamycin, two were found to be glycosylated but not phosphorylated. These were designated gPr80gag and gP94gag. Both shared identical [35S]methionine peptides with Pr65gag and p30. Of the two nonglycosylated precursors, Pr65gag and Pr75gag, only Pr65gag was found to be detectably phosphorylated, and Pr75gag could be readily identified only when glycosylation was inhibited. On the basis of these results, a scheme for the post-translational modification of gag polyproteins is proposed. According to this scheme the gag gene-encoded polyproteins are processed from a common precursor, Pr75gag, by two divergent pathways: one leading through the intermediate Pr65gag to internal virion components via cleavage and phosphorylation and the other via tunicamycin-sensitive mannosylation to the intermediate gPr80gag, which is further glycosylated to yield cell surface polyprotein gP94gag.  相似文献   

10.
The envelope proteins of mouse mammary tumor virus (MMTV) are synthesized from a subgenomic 24S mRNA as a 75,000-dalton glycosylated precursor polyprotein which is eventually processed to the mature glycoproteins gp52 and gp36. In vivo synthesis of this env precursor in the presence of the core glycosylation inhibitor tunicamycin yielded a precursor of approximately 61,000 daltons (P61env). However, a 67,000-dalton protein (P67env) was obtained from cell-free translation with the MMTV 24S mRNA as the template. To determine whether the portion of the protein cleaved from P67env to give P61env was removed from the NH2-terminal end of P67env and as such would represent a leader sequence, the NH2-terminal amino acid sequence of the terminal peptide gp52 was determined. Glutamic acid, and not methionine, was found to be the amino-terminal residue of gp52, indicating that the cleaved portion was derived from the NH2-terminal end of P67env. The NH2-terminal amino acid sequences of gp52's from endogenous and exogenous C3H MMTVs were determined though 46 residues and found to be identical. However, amino acid composition and type-specific gp52 radioimmunoassays from MMTVs grown in heterologous cells indicated primary structure differences between gp52's of the two viruses. The nucleic acid sequence of cloned MMTV DNA fragments (J. Majors and H. E. Varmus, personal communication) in conjunction with the NH2-terminal sequence of gp52 allowed localization of the env gene in the MMTV genome. Nucleotides coding for the NH2 terminus of gp52 begin approximately 0.8 kilobase to the 3' side of the single EcoRI cleavage site. Localization of the env gene at that point agrees with the proposed gene order -gag-pol-env- and also allows sufficient coding potential for the glycoprotein precursor without extending into the long terminal repeat.  相似文献   

11.
12.
Dexamethasone, a synthetic glucocorticoid, is required for full posttranslational maturation of mouse mammary tumor virus (MMTV) phosphoproteins and glycoproteins in M1.54 cells, a viral infected rat hepatoma (HTC) cell line. Pulse-chase radiolabeling with [35S]methionine revealed that steroids with known glucocorticoid activity (such as dexamethasone and hydrocortisone) regulated the maturation of both MMTV polyproteins in a manner proportional to their occupancy for glucocorticoid receptors and their biological potency. In contrast, progesterone selectively induced the proteolytic processing of MMTV phosphoproteins but simultaneously antagonized the dexamethasone-regulated maturation of MMTV glycoproteins and all other tested glucocorticoid responses. Exposure to suboptimal concentrations of both progesterone and dexamethasone fully stimulated the processing of MMTV phosphoproteins, suggesting that steroid receptors occupied with combinations of either steroid functionally interact at the putative maturation gene. Moreover, treatment with either actinomycin D, a potent inhibitor of de novo RNA synthesis, or RU38486, a synthetic antagonist of glucocorticoid and progesterone action, prevented both the dexamethasone and progesterone-regulated induction of MMTV phosphoprotein maturation. Sedimentation velocity and saturation binding analysis revealed that the sizes and concentrations of hepatoma cell progesterone and dexamethasone binding activities are similar while specific binding of the active progestin R5020 was not detected in either M1.54 cells or the glucocorticoid receptor deficient HTC cell line MSN6.10.2. Taken together, our results demonstrate that two distinct classes of steroid hormones can uniquely alter the posttranslational maturation of a specific subset of phosphoprotein substrates by a common glucocorticoid receptor-dependent process.  相似文献   

13.
14.
The biological control of posttranslational maturation and compartmentalization reactions that operate upon proteins during transport to their final cellular destinations is crucial for normal cellular function. Using the expression of mouse mammary tumor virus (MMTV) glycoproteins as sensitive probes in the viral-infected rat hepatoma cell line M1.54, we have discovered and documented a novel glucocorticoid-regulated trafficking pathway that controls the cell surface localization of MMTV glycoproteins. One complement-selected derivative of M1.54 cells, CR4, failed to compartmentalize cell surface MMTV glycoproteins in the presence of dexamethasone. To test genetically if this glycoprotein trafficking pathway is mediated by cellular or viral gene products, CR4 cells were fused with uninfected Fu5 rat hepatoma cells. Indirect immunofluorescence of CR4 X Fu5 heterokaryons revealed that Fu5 complemented the defect in CR4 only after exposure to 1 microM dexamethasone. The glucocorticoid inhibition of Fu5 proliferation was exploited to recover the receptor-deficient uninfected derivative EDR3 that expressed a 100-fold lower level of [3H]dexamethasone binding activity. Analysis of CR4 X EDR3 cell fusions by indirect immunofluorescence revealed that EDR4 cells complemented CR4 in a dexamethasone-dependent manner, suggesting that EDR3 supplied a functinal trafficking component while CR4 provided a functional glucocorticoid receptor to the heterokaryons. Taken together, our results demonstrate that cellular-encoded glucocorticoid-inducible components mediate the regulated trafficking of cell surface MMTV glycoproteins.  相似文献   

15.
Most mouse inbred strains carry two renin genes, Ren-1 and Ren-2, Renin-2, the product of the Ren-2 gene, is highly expressed in the submaxillary gland. It is a renin isoenzyme 96% similar to kidney renin-1, but unglycosylated. In order to investigate if glycosylation of prorenin affects its processing and/or secretion we have introduced two potential N-linked glycosylation sites into preprorenin-2 cDNA using site-directed mutagenesis. Expression plasmids were derived from wild-type and mutant renin-2 cDNA and were transfected into AtT20 cells. Both transfected cells, expressing glycosylated or unglycosylated forms, secreted prorenin and renin by the constitutive and regulated pathways, respectively. Prorenin was correctly processed to active renin but the second maturation site was not cleaved in AtT20 cells. The comparison of glycosylated and unglycosylated renin expression showed a diminished secretion of glycosylated active renin. Prevention of glycosylation with tunicamycin resulted in an improved secretion of active renin. Moreover, the efficiency of the trypsin activation in vitro was reduced for glycosylated prorenin and it was restored when the activation was performed on mutant renin secreted from tunicamycin-treated cells. It is proposed that the bulky carbohydrates attached to prorenin constitute a steric hindrance to proteolysis by maturation enzymes.  相似文献   

16.
17.
Pro-opiomelanocortin (POMC) is glycosylated and proteolytically cleaved to produce a number of smaller peptide hormones including adrenocorticotropic hormone (ACTH) and endorphin in mammalian pituitary and the mouse pituitary cell line AtT-20/D16v. When glycosylation of POMC is inhibited in AtT-20 cells with the drug tunicamycin, a 26,000-dalton protein appears in place of the glycosylated 29,000- and 32,000-dalton forms of POMC. The 26,000-dalton form found in tunicamycin-treated cells has the same [35S]methionine tryptic peptides as 29,000- and 32,000-dalton POMC, indicating that the decrease in apparent mass is most likely due to loss of carbohydrate and not to changes in the peptide backbone. The 4,500-dalton form of alpha(1-39)ACTH and the 3,000- and 11,000-dalton forms of endorphin are all present in tunicamycin-treated cells. The glycosylated form of alpha(1-39)ACTH, however, is missing and the glycosylated ACTH intermediates are replaced by unglycosylated ACTH intermediates. Pulse-chase studies demonstrate that the 26,000-dalton unglycosylated POMC is the precursor of the smaller ACTH and endorphin molecules in tunicamycin-treated cells. Furthermore, all of the forms of ACTH and endorphin found in tunicamycin-treated cells are secreted. Thus, it appears that glycosylation is not an essential step for correct cleavage or secretion of POMC or its products.  相似文献   

18.
Cell surface glycoproteins apparently influence cell interactions, morphogenesis and the course of cellular differentiation. We have therefore investigated the biosynthesis of glycoproteins in 8-cell mouse embryos by using 1.0 μg tunicamycin/ml, a specific inhibitor of glycosylation of N-glycosidically linked glycoproteins. The antibiotic had little effect on the incorporation of leucine into polypeptides, but the incorporation of glucosamine and mannose was inhibited by about 60% with a marked reduction in their incorporation into the majority of the glycopeptides as analysed on polyacrylamide gels. The binding of concanavalin A (conA) and peanut lectin to the embryonic cell surface was also markedly diminished by tunicamycin. However, the binding of peanut lectin to isolated blastomeres displayed a polar distribution with predominant binding to the outer apical surface in all cases, despite a marked reduction in microvilli. Hence tunicamycin has no substantial effect on the molecular distribution of at least some cell surface antigens. Analysis of iodinated cell surface components showed that two components of mol, wt <68 000 and >165 000 were inhibited by tunicamycin. Whereas embryos in the control group underwent compaction and blastulation, those in the experimental group remained uncompacted, although cleavage continued to about the 32-cell stage. However, some embryos initially underwent partial compaction but later decompacted in the presence of tunicamycin; numerous adherens and possibly a few gap junctions were also detected between blastomeres. We suggest that a number of cell surface antigens including N-glycosidically linked glycoproteins may be engaged sequentially during compaction.  相似文献   

19.
20.
The presence of O-glycosidic linkages on herpes simplex virus type 1 (HSV-1) glycoproteins was indicated by the synthesis and glycosylation of HSV-1 glycoproteins in the presence of tunicamycin. Monospecific antiserum to HSV-1 gC immunoprecipitated a 92,000-molecular-weight protein synthesized in the presence of tunicamycin and isotopically labeled with glucosamine or galactose. Anti-gAB did not immunoprecipitate a carbohydrate-labeled HSV-1 protein synthesized in the presence of tunicamycin. The purified glucosamine-labeled 92,000-molecular-weight protein synthesized in the presence of tunicamycin and the fully glycosylated forms of gAB and gC were tested for their sensitivity to mild alkaline hydrolysis. Purified gAB was resistant to mild alkaline hydrolysis, whereas gC and the 92,000-molecular-weight protein were both sensitive to mild alkaline hydrolysis. These results suggest that O-glycosidic linkages are associated with the HSV-1 gC glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号