首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycystin-1 and polycystin-2 are the products of PKD1 and PKD2, genes that are mutated in most cases of autosomal dominant polycystic kidney disease. Since the first two polycystins were cloned, three new members, polycystin-L, -2L2, and -REJ, have been identified. In this study, we describe a sixth member of the family, polycystin-1L1, encoded by PKD1L1 in human. The full-length cDNA sequence of PKD1L1, determined from human testis cDNA, encodes a 2849-amino-acid protein and 58 exons in a 187-kb genomic region. The deduced amino acid sequence of polycystin-1L1 has significant homology with all known polycystins, but the longest stretches of homology were found with polycystin-1 and -REJ over the 1453- and 932-amino-acid residues, respectively. Polycystin-1L1 is predicted to have two Ig-like PKD, a REJ, a GPS, a LH2/PLAT, a coiled-coil, and 11 putative transmembrane domains. Several rhodopsin-like G-protein-coupled receptor (GPCR) signatures are also found in polycystin-1L1. Dot-blot analysis and RT-PCR revealed that human PKD1L1 is expressed in testis and in fetal and adult heart. In situ hybridization analysis showed that the most abundant and specific expression of Pkd1l1 was found in Leydig cells, a known source of testosterone production, in mouse testis. We have assigned PKD1L1 to the short arm of human chromosome 7 in bands p12--p13 and Pkd1l1 to mouse chromosome 11 in band A2 by fluorescence in situ hybridization. We hypothesize a role for polycystin-1L1 in the heart and in the male reproductive system.  相似文献   

2.
3.
Mutations in genes encoding polycystin-1 (PC1) and polycystin-2 cause autosomal dominant polycystic kidney disease. The polycystin protein family is composed of Ca2+-permeable pore-forming subunits and receptor-like integral membrane proteins. Here we describe a novel member of the polycystin-1-like subfamily, polycystin-1L2 (PC1L2), encoded by PKD1L2, which has various alternative splicing forms with two translation initiation sites. PC1L2 short form starts in exon 12 of the long form. The longest open reading frame of PKD1L2 short form, determined from human testis cDNA, encodes a 1775-amino-acid protein and 32 exons, whereas the long form is predicted to encode a 2460-residue protein. Both forms have a small receptor for egg jelly domain, a G-protein-coupled receptor proteolytic site, an LH2/PLAT, and 11 putative transmembrane domains, as well as a number of rhodopsin-like G-protein-coupled receptor signatures. RT-PCR analysis shows that the short form, but not the long form, of human PKD1L2 is expressed in the developing and adult heart and kidney. Furthermore, by GST pull-down assay we observed that PC1L2 and polycystin-1L1 are able to bind to specific G-protein subunits. We also show that PC1 C-terminal cytosolic domain binds to Galpha12, Galphas, and Galphai1, while it weakly interacts with Galphai2. Our results indicate that both PC1-like molecules may act as G-protein-coupled receptors.  相似文献   

4.
Ligand-gated ion channels are important in sensory and synaptic transduction. The PKD1L3-PKD2L1 channel complex is a sour taste receptor candidate that is activated by acids. Here, we report that the proton-activated PKD1L3-PKD2L1 ion channels have the unique ability to be activated after the removal of an acid stimulus. We refer to this property as the off-response (previously described as a delayed response). Electrophysiological analyses show that acid-induced responses are observed only after the removal of an acid solution at less than pH 3.0. A small increase in pH is sufficient for PKD1L3-PKD2L1 channel activation, after exposure to an acid at pH 2.5. These results indicate that this channel is a new type of ion channel-designated as an 'off-channel'-which is activated during stimulus application but not gated open until the removal of the stimulus. The off-response property of PKD1L3-PKD2L1 channels might explain the physiological phenomena occurring during sour taste sensation.  相似文献   

5.
The polycystic kidney disease (PKD) 1L3-PKD2L1 channel is a candidate sour taste receptor expressed in mammalian taste receptor cells. Various acids are reported to activate PKD channels after the removal of the acid stimuli, but little information is available on the activation of these channels by acetic acid. It was difficult to analyze the PKD channel activation by acetic acid using Ca2+ imaging experiments because this acid induces a transient and nonspecific response in cultured cells. Here, we developed a novel method to evaluate PKD channel activation by acetic acid. Nonspecific responses were observed only over a short period after the application of acetic acid. In contrast, PKD channel activation evoked by acetic acid as well as citric acid was detected even at a later time point. This method revealed that PKD1L3-PKD2L1 channel activation by acetic acid was pH-dependent and occurred when the ambient pH was <3.1.  相似文献   

6.
Mutations in genes that encode polycystins 1 or 2 cause polycystic kidney disease (PKD). Here, we report the genomic organization and functional expression of murine orthologue of human polycystin-2L1 (PKD2L1). The murine PKD2L1 gene comprises 15 exons in chromosome 19C3. Coexpression of PKD2L1 together with polycystin-1 (PKD1) resulted in the expression of PKD2L1 channels on the cell surface, whereas PKD2L1 expressed alone was retained within the endoplasmic reticulum (ER). This suggested that interaction between PKD1 and PKD2L1 is essential for PKD2L1 trafficking and channel formation. Deletion analysis at the cytoplasmic tail of PKD2L1 revealed that the coiled-coil domain was important for trafficking by PKD1. Mutagenesis within two newly identified ER retention signal-like amino acid sequences caused PKD2L1 to be expressed at the cell surface. This indicated that the coiled-coil domain was responsible for retaining PKD2L1 within the ER. Functional analysis of murine PKD2L1 expressed in HEK 293 cells was undertaken using calcium imaging. Coexpression of PKD1 and PKD2L1 resulted in the formation of functional cation channels that were opened by hypo-osmotic stimulation, whereas neither molecule formed functional channels when expressed alone. We conclude that PKD2L1 forms functional cation channels on the plasma membrane by interacting with PKD1. These findings raise the possibility that PKD2L1 represents the third genetic locus that is responsible for PKD.  相似文献   

7.
Mutations in the PKD2 gene lead to the development of polycystic kidney disease (PKD). The PKD2 gene codes for polycystin-2, a cation channel with unknown function. The cytoplasmic, C-terminal domain interacts with a large number of proteins including mDia1, α-actinin, PIGEA-14, troponin, and tropomyosin. The C-terminal fragment polycystin-2 (680–796) consisting of 117 amino acids contains a putative calcium binding EF-hand. It was produced in Escherichia coli and enriched uniformly with 13C and 15N. The backbone and side chain resonances were assigned by multidimensional NMR methods, the obtained chemical shifts are typical for a partially folded protein. The chemical shifts obtained are in line with the existence of two paired helix-loop-helix (HLH) motifs.  相似文献   

8.
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.  相似文献   

9.
Mutations of PKD1 cause autosomal dominant polycystic kidney disease (ADPKD), a syndrome characterized by kidney cysts and progressive renal failure. Polycystin-1, the protein encoded by PKD1, is a large integral membrane protein with a short carboxy-terminal cytoplasmic domain that appears to initiate multiple cellular programs. We report now that this polycystin-1 domain contains a novel motif responsible for rearrangements of intermediate filaments, microtubules and the endoplasmic reticulum (ER). This motif reveals homology to CLIMP-63, a microtubule-binding protein that rearranges the ER. Our findings suggest that polycystin-1 influences the shape and localization of both the microtubular network and the ER.  相似文献   

10.
Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of polycystin-1 consists of 16 copies of a novel protein module called the PKD domain. Here we show that this domain has a beta-sandwich fold. Although this fold is common to a number of cell-surface modules, the PKD domain represents a distinct protein family. The tenth PKD domain of human and Fugu polycystin-1 show extensive conservation of surface residues suggesting that this region could be a ligand-binding site. This structure will allow the likely effects of missense mutations in a large part of the PKD1 gene to be determined.  相似文献   

11.
Polycystin-1 is a large membrane-associated protein that interacts with polycystin-2 in the primary cilia of renal epithelial cells to form a mechanosensitive ion channel. Bending of the cilia induces calcium flow into the cells, mediated by the polycystin complex. Antibodies to polycystin-1 and polycystin-2 abolish this activation. Based on this, it has been suggested that the extracellular region of polycystin-1, which has a number of putative binding domains, may act as a mechanosensor. A large proportion of the extracellular region of polycystin-1 consists of beta-sandwich PKD domains in tandem array. We use atomic force microscopy to investigate the mechanical properties of the PKD domains of polycystin-1. We show that these domains, despite having a low thermodynamic stability, exhibit a remarkable mechanical strength, similar to that of immunoglobulin domains in the giant muscle protein titin. In agreement with the experimental results molecular dynamics simulations performed at low constant force show that the first PKD domain of polycystin (PKDd1) has a similar unfolding time as titin I27, under the same conditions. The simulations suggest that the basis for this mechanical stability is the formation of a force-stabilised intermediate. Our results suggest that these domains will remain folded under external force supporting the hypothesis that polycystin-1 could act as a mechanosensor, detecting changes in fluid flow in the kidney tubule.  相似文献   

12.
13.
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.  相似文献   

14.
15.
Most patients with autosomal dominant polycystic kidney disease (ADPKD) harbor mutations truncating polycystin-1 (PC1) or polycystin-2 (PC2), products of the PKD1 and PKD2 genes, respectively. A third member of the polycystin family, polycystin-L (PCL), was recently shown to function as a Ca(2+)-modulated nonselective cation channel. More recently, PC2 was also shown to be a nonselective cation channel with comparable properties to PCL, though the membrane targeting of PC2 likely varies with cell types. Here we show that PC2 expressed heterologously in Xenopus oocytes is targeted to intracellular compartments. By contrast, a truncated form of mouse PC2 corresponding to a naturally occurring human mutation R742X is targeted predominantly to the plasma membrane where it mediates K(+), Na(+), and Ca(2+) currents. Unlike PCL, the truncated form does not display Ca(2+)-activated transport activities, possibly due to loss of an EF-hand at the C-terminus. We propose that PC2 forms ion channels utilizing structural components which are preserved in the R742X form of the protein. Implications for epithelial cell signaling are discussed.  相似文献   

16.
Polycystic kidney disease (PKD) 2L1 protein is a member of the transient receptor potential (TRP) ion channel family. In circumvallate and foliate papillae, PKD2L1 is coexpressed with PKD1L3. PKD2L1 and PKD1L3 interact through their transmembrane domain and the resulting heteromer PKD1L3/PKD2L1 owns a unique channel property called 'off-responses' to acid stimulation, although PKD2L1 does not own this property by itself. To define the pharmacological properties of the PKD1L3/PKD2L1 channel, we developed a new method to effectively evaluate channel activity using human embryonic kidney 293T cells in which the channel was heterologously expressed. This method was applied to screen substances that potentially regulate it. We found that capsaicin and its analogs, which are TRPV1 agonists, inhibited the response to acid stimuli and that the capsaicin inhibition was reversible with an IC(50) of 32.5 μm. Capsaicin and its analogs are thus useful tools for physiological analysis of PKD1L3/PKD2L1 function.  相似文献   

17.
Autosomal dominant polycystic kidney disease (PKD) is caused by mutation of polycystin-1 or polycystin-2. Polycystin-2 is a Ca(2+)-permeable cation channel. Polycystin-1 is an integral membrane protein of less defined function. The N-terminal extracellular region of polycystin-1 contains potential motifs for protein and carbohydrate interaction. We now report that expression of polycystin-1 alone in Chinese hamster ovary (CHO) cells and in PKD2-null cells can confer Ca(2+)-permeable non-selective cation currents. Co-expression of a loss-of-function mutant of polycystin-2 in CHO cells does not reduce polycystin-1-dependent channel activity. A polycystin-1 mutant lacking approximately 2900 amino acids of the extracellular region is targeted to the cell surface but does not produce current. Extracellular application of antibodies against the immunoglobulin-like PKD domains reduces polycystin-1-dependent current. These results support the hypothesis that polycystin-1 is a surface membrane receptor that transduces the signal via changes in ionic currents.  相似文献   

18.
PKD2 gene encodes a critical cation channel protein that plays important roles in various developmental processes and is usually evolutionarily conserved. In the present study, we analyzed the evolutionary patterns of PKD2 and its homologous genes (PKD2L1, PKD2L2) from nine mammalian species. In this study, we demonstrated the orthologs of PKD2 gene family evolved under a dominant purifying selection force. Our results in combination with the reported evidences from functional researches suggested the entire PKD2 gene family are conserved and perform essential biological roles during mammalian evolution. In rodents, PKD2 gene family members appeared to have evolved more rapidly than other mammalian lineages, probably resulting from relaxation of purifying selection. However, positive selection imposed on synonymous sites also potentially contributed to this case. For the paralogs, our results implied that PKD2L2 genes evolved under a weaker purifying selection constraint than PKD2 and PKD2L1 genes. Interestingly, some loop regions of transmembrane domain of PKD2L2 exhibited higher P N/P S ratios than expected, suggesting these regions are more functional divergent in organisms and worthy of special attention. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chun Ye, Huan Sun have contributed equally to this work.  相似文献   

19.
The approximately 14 kb mRNA of the polycystic kidney disease gene PKD1 encodes a large ( approximately 460 kDa) protein, termed polycystin-1 (PC-1), that is responsible for autosomal dominant polycystic kidney disease (ADPKD). The unique organization of its multiple adhesive domains (16 Ig-like domains/PKD domains) suggests that it may play an important role in cell-cell/cell-matrix interactions. Here we demonstrated that PKD1 promoted cell-cell and cell-matrix interactions in cancer cells, indicating that PC-1 is involved in the cell adhesion process. Furthermore in this study, we showed that PKD1 inhibited cancer cells migration and invasion. And we also showed that PC-1 regulated these processes in a process that may be at least partially through the Wnt pathway. Collectively, our data suggest that PKD1 may act as a novel member of the tumor suppressor family of genes.  相似文献   

20.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号