首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+/H+ antiporters play important physiological roles in most biological membranes. Although they were first discovered in mitochondria (Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149-155), the mitochondrial Na+/H+ antiporter has not yet been reconstituted nor has the protein responsible for its activity been identified. We used detergents to extract proteins from beef heart mitochondria and reconstituted these proteins into lipid vesicles loaded with the fluorescent probe, sodium-binding benzofuran isophthalate. The vesicles exhibited spontaneous, electroneutral Na+ transport that was inhibited by Li+ and Mn2+ with appropriate kinetic constants. These protocols were then used to follow fractionation of the solubilized proteins with DEAE-cellulose columns. We obtained a fraction that catalyzed Na+/H+ antiport with Vmax values of 75-120 mumol/mg protein/min, 500-700 times faster than observed in intact mitochondria. Na+ transport was inhibited by Li+ with I50 values of 0.5-1.0 mM and by Mn2+ with I50 value of 0.5 mM. The Km for Na+ was 31 mM. These values correspond to those found in intact mitochondria, and we conclude that the solubilized mitochondrial Na+/H+ antiporter has been partially purified in a reconstitutively active state.  相似文献   

2.
The conditions for optimal solubilization and reconstitution of bovine brain synaptic plasma membrane Na+/Ca2+ exchange activity were examined and a series of chromatographic procedures were used for the isolation of a protein involved in this transport activity. The zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate in the presence of 20% (vol/vol) glycerol led to optimal solubilization, and soybean phospholipids in low-pH medium were found to produce optimal reconstitution of activity after dialysis to remove the detergent. Sequential chromatography steps involving the use of gel filtration on Sephacryl S-400 HR, ion exchange on diethylaminoethyl-Sephacel, and metal chelate chromatography on tris-(carboxymethyl)ethylenediamine loaded with LaCl3 led to the isolation of a fraction highly enriched in both Na+/Ca2+ exchange activity and two protein bands identified by denaturing electrophoresis. The estimated molecular masses of the two proteins were 50 and 36 kDa. Development of polyclonal antibodies to the 36-kDa protein permitted immunoextraction of greater than 95% of the antiporter activity from solubilized synaptic plasma membranes. These antibodies cross-reacted with the electroeluted 50-kDa protein on enzyme-linked immunosorbent assays, suggesting a close relationship between the two proteins. These results indicate that the 36-kDa protein is at least a component of the brain membrane Na+/Ca2+ antiporter.  相似文献   

3.
The effects of Li+ on Na-Ca exchange in bovine cardiac sarcolemmal vesicles were examined. The initial rate of Na(+)-dependent Ca2+ uptake and efflux was inhibited by Li+ in a dose dependent manner. The initial rate of Na(+)-dependent Ca2+ uptake was inhibited 49.8 +/- 2.9% (S.E.) (n = 6) in the presence of Li+ compared to activity in external K+ or choline+. Kinetic analysis indicated that Li+ increased the Km for Ca2+ (96.3 microM) compared to K+ and choline+ (25.5 and 22.9 microM respectively) while Vmax (1.4, 1.2 and 1.1 nmol Ca2+/mg protein/sec respectively) remained unchanged. Li+ did not alter the experimentally derived stoichiometry of the exchange reaction of 3 Na+ for 1 Ca2+.  相似文献   

4.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

5.
The transport properties of mitochondria are such that net potassium flux across the inner membrane determines mitochondrial volume. It has been known that K+ uptake is mediated by diffusive leak driven by the high electrical membrane potential maintained by redox-driven, electrogenic proton ejection and that regulated K+ efflux is mediated by an 82-kDa inner membrane K+/H+ antiporter. There is also long-standing suggestive evidence for the existence of an inner membrane protein designed to catalyze electrophoretic K+ uptake into mitochondria. We report reconstitution of a highly purified inner membrane protein fraction from rat liver and beef heart mitochondria that catalyzes electrophoretic K+ flux in liposomes and channel activity in planar lipid bilayers. The unit conductance of the channel at saturating [K+] is about 30 pS. Reconstituted K+ flux is inhibited with high affinity by ATP and ADP in the presence of divalent cations and by glibenclamide in the absence of divalent cations. The mitochondrial ATP-dependent K+ channel is selective for K+, with a Km of 32 mM, and does not transport Na+. K+ transport depends on voltage in a manner consistent with a channel activity that is not voltage-regulated. Thus, the mitochondrial ATP-dependent K+ channel exhibits properties that are remarkably similar to those of the ATP-dependent K+ channels of plasma membranes.  相似文献   

6.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

8.
The kinetic properties and inhibitor sensitivity of the Na+-H+ exchange activity present in the inner membrane of rat heart and liver mitochondria were studied. (1) Na+-induced H+ efflux from mitochondria followed Michaelis-Menten kinetics. In heart mitochondria, the Km for Na+ was 24 +/- 4 mM and the Vmax was 4.5 +/- 1.4 nmol H+/mg protein per s (n = 6). Basically similar values were obtained in liver mitochondria (Km = 31 +/- 2 mM, Vmax = 5.3 +/- 0.2 nmol H+/mg protein per s, n = 4). (2) Li+ proved to be a substrate (Km = 5.9 mM, Vmax = 2.3 nmol H+/mg protein per s) and a potent competitive inhibitor with respect to Na+ (Ki approximately 0.7 mM). (3) External H+ inhibited the mitochondrial Na+-H+ exchange competitively. (4) Two benzamil derivatives of amiloride, 5-(N-4-chlorobenzyl)-N-(2',4'-dimethyl)benzamil and 3',5'-bis(trifluoromethyl)benzamil were effective inhibitors of the mitochondrial Na+-H+ exchange (50% inhibition was attained by approx. 60 microM in the presence of 15 mM Na+). (5) Three 5-amino analogues of amiloride, which are very strong Na+-H+ exchange blockers on the plasma membrane, exerted only weak inhibitory activity on the mitochondrial Na+-H+ exchange. (6) The results indicate that the mitochondrial and the plasma membrane antiporters represent distinct molecular entities.  相似文献   

9.
Treatment of canine cardiac sarcolemmal vesicles with phospholipase D resulted in a large stimulation (up to 400%) of Na+-Ca2+ exchange activity. The phospholipase D treatment decreased the apparent Km (Ca2+) for the initial rate of Nai+-dependent Ca2+ uptake from 18.2 +/- 2.6 to 6.3 +/- 0.3 microM. The Vmax increased from 18.0 +/- 3.6 to 31.5 +/- 3.6 nmol of Ca2+/mg of protein/s. The effect was specific for Na+-Ca2+ exchange; other sarcolemmal transport enzymes ((Na+, K+)-ATPase; ATP-dependent Ca2+ transport) are inhibited by incubation with phospholipase D. Phospholipase D had little effect on the passive Ca2+ permeability of the sarcolemmal vesicles. After treatment with 0.4 unit/ml of phospholipase D (20 min, 37 degrees C), the sarcolemmal content of phosphatidic acid rose from 0.9 +/- 0.2 to 8.9 +/- 0.4%; simultaneously, Na+-Ca2+ exchange activity increased 327 +/- 87%. It is probable that the elevated phosphatidic acid level is responsible for the enhanced Na+-Ca2+ exchange activity. In a previous study (Philipson, K. D., Frank, J. S., and Nishimoto, A. Y. (1983) J. Biol. Chem. 258, 5905-5910), we hypothesized that negatively charged phospholipids were important in Na+-Ca2+ exchange, and the present results are consistent with this hypothesis. Stimulation of Na+-Ca2+ exchange by phosphatidic acid may be important in explaining the Ca2+ influx which accompanies the phosphatidylinositol turnover response which occurs in a wide variety of tissues.  相似文献   

10.
Monoclonal antibodies 44D7 and 4F2 inhibited specifically the Na+-dependent Ca2+ fluxes characteristic of the Na+/Ca2+ exchanger in cardiac and skeletal muscle sarcolemmal vesicles. Preincubation of membrane vesicles with monoclonal antibody 44D7 inhibited 90% of the Na+-dependent Ca2+ uptake measured in the first 10 s of the reaction and 50% of that measured after 60 s. Ca2+/calmodulin-dependent ATPase activity and ATP-dependent Ca2+ uptake by sarcolemmal vesicles were not affected by monoclonal antibody 44D7 whereas the Na+-dependent release of accumulated Ca2+ was inhibited. In the presence of the 44D7 antigen isolated from human kidney, monoclonal antibody 44D7 could no longer inhibit Na+-dependent Ca2+ fluxes. The distribution of 4F2 antigenic activity in the isolated muscle membrane fractions correlated with that of Na+/Ca2+ exchanger activity; cardiac and skeletal muscle sarcolemmal vesicles expressed higher levels of the antigen than skeletal muscle transverse tubule membrane, while no antigen could be detected in sarcoplasmic reticulum membranes. Our results suggest that monoclonal antibodies 44D7 and 4F2 interact either directly with the Na+/Ca2+ exchanger molecules or with some other protein(s) responsible for the regulation of this activity in the heart and skeletal muscle.  相似文献   

11.
Spliced isoforms of the Na+/Ca2+ exchanger, NCLX, truncated at the alpha-repeat region have been identified. The activity and functional organization of such proteins are, however, poorly understood. In the present work, we have studied Na+/Ca2+ exchange mediated by single alpha-repeat constructs (alpha1 and alpha2) of NCLX. Sodium-dependent calcium transport was fluorescently detected in both the reversal and forward modes; calcium-dependent outward currents were also recorded using a whole cell patch configuration in HEK293 cells heterologously expressing either the alpha1 or alpha2 single-domain proteins. In contrast, calcium transport and reversal currents were not detected when cells were transfected with a vector or with an alpha2 mutant (alpha2-S273T). Thus, our data indicate that the single alpha-domain constructs mediate electrogenic Na+/Ca2+ exchange. The alpha1 domain, but not the alpha2, exhibited partial sensitivity to the NCX inhibitor, KB-R7943, while Li+-dependent Ca2+ efflux was detected in cells expressing either the alpha1 or alpha2 construct. The functional organization of the single alpha-domain constructs was assessed using a dominant-negative approach. Coexpression of the alpha1 or alpha2 constructs with the nonfunctional alpha2-S273T mutant had a synergistic inhibitory effect on Na+/Ca2+ transport. Dose-dependence analysis of the inhibition of alpha2 construct activity by the alpha2-S273T mutant indicated that the functional unit is either a dimer or a trimer. Immunoprecipitation analysis indicated that the alpha2 construct indeed interacts with the alpha2-S273T mutant. Taken together, our data indicate that although single alpha1 or alpha2 domain constructs are independently capable of Na+/Ca2+ exchange, oligomerization is required for their activity. Such organization may give rise to transport activity with distinct kinetic parameters and physiological roles.  相似文献   

12.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

13.
Regulation of intracellular pH (pHi) in single cultured rat hippocampal neurons was investigated using the fluorescent pHi indicator dye bis-carboxyethylcarboxyfluorescein. Resting pHi was dependent on the presence of bicarbonate and external Na+ but was not altered significantly by removal of Cl- or treatment with the anion exchange inhibitor diisothiocyanatostilbene-2,2'-disulfonate. Recovery of pHi from acute acid loading was due, in large part, to a pharmacologically distinct variant of the Na+/H+ antiporter. In nominally HCO3(-)-free solutions, this recovery exhibited a saturable dose dependence on extracellular Na+ (Km = 23-26 mM) or Li+. The antiporter was activated by decreasing pHi and was unaffected by collapse of the membrane potential with valinomycin. Like the Na+/H+ antiporter described in other cell systems, the hippocampal activity was inhibited by harmaline, but in sharp contrast, neither amiloride nor its more potent 5-amino-substituted analogues were able to prevent the recovery from an acid load. These data indicate that Na(+)-dependent mechanisms dominate pHi regulation in hippocampal neurons and suggest a role for a novel variant of the Na+/H+ antiporter.  相似文献   

14.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

15.
The basolateral Na-H antiporter of the turtle colon exhibits both conductive and electroneutral Na+ transport (Post and Dawson. 1992. American Journal of Physiology. 262:C1089-C1094). To explore the mechanism of antiporter-mediated current flow, we compared the conditions necessary to evoke conduction and exchange, and determined the kinetics of activation for both processes. Outward (cell to extracellular fluid) but not inward (extracellular fluid to cell) Na+ or Li+ gradients promoted antiporter-mediated Na+ or Li+ currents, whereas an outwardly directed proton gradient drove inward Na+ or Li+ currents. Proton gradient-driven, "counterflow" current is strong evidence for an exchange stoichiometry of > 1 Na+ or Li+ per proton. Consistent with this notion, outward Na+ and Li+ currents generated by outward Na+ or Li+ gradients displayed sigmoidal activation kinetics. Antiporter-mediated proton currents were never observed, suggesting that only a single proton was transported per turnover of the antiporter. In contrast to Na+ conduction, Na+ exchange was driven by either outwardly or inwardly directed Na+, Li+, or H+ gradients, and the activation of Na+/Na+ exchange was consistent with Michaelis-Menten kinetics (K1/2 = 5 mM). Raising the extracellular fluid Na+ or Li+ concentration, but not extracellular fluid proton concentration, inhibited antiporter-mediated conduction and activated Na+ exchange. These results are consistent with a model for the Na-H antiporter in which the binding of Na+ or Li+ to a high-affinity site gives rise to one-for-one cation exchange, but the binding of Na+ or Li+ ions to other, lower-affinity sites can give rise to a nonunity, cation exchange stoichiometry and, hence, the net translocation of charge. The relative proportion of conductive and nonconductive events is determined by the magnitude and orientation of the substrate gradient and by the serosal concentration of Na+ or Li+.  相似文献   

16.
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.  相似文献   

17.
A previous communication (Pereira da Silva, L., Bernardes, C.F. and Vercesi, A.E. (1984) Biochem. Biophys. Res. Commun. 124, 80-86) presented evidence that lasalocid-A, at concentrations far below those required to act as a Ca2+ ionophore, significantly inhibits Ca2+ efflux from liver mitochondria. In the present work we have studied the mechanism of this inhibition in liver and heart mitochondria. It was observed that lasalocid-A (25-250 nM), like nigericin, promotes the electroneutral exchange of K+ for H+ across the inner mitochondrial membrane and as a consequence can cause significant alterations in delta pH and delta psi. An indirect effect of these changes that might lead to inhibition of mitochondrial Ca2+ release was ruled out by experiments showing that the three observed patterns of lasalocid-A effect depend on the size of the mitochondrial Ca2+ load. At low Ca2+ loads (5-70 nmol Ca2+/mg protein), under experimental conditions in which Ca2+ release is supposed to be mediated by a Ca2+/2H+ antiporter, the kinetic data indicate that lasalocid-A inhibits the efflux of the cation by a competitive mechanism. The Ca2+/2Na+ antiporter, the dominant pathway for Ca2+ efflux from heart mitochondria, is not affected by lasalocid-A. At intermediate Ca2+ loads (70-110 nmol Ca2+/mg protein), lasalocid-A slightly stimulates Ca2+ release. This effect appears to be due to an increase in membrane permeability caused by the displacement of a pool of membrane bound Mg2+ possibly involved in the maintenance of membrane structure. Finally, at high Ca2+ loads (110-140 nmol Ca2+/mg protein) lasalocid-A enhances Ca2+ retention by liver mitochondria even in the presence of Ca2(+)-releasing agents such as phosphate and oxidants of the mitochondrial pyridine nucleotides. The maintenance of a high membrane potential under these conditions may indicate that lasalocid-A is a potent inhibitor of the Ca2(+)-induced membrane permeabilization. Nigericin, whose chemical structure resembles that of lasalocid-A, caused similar results.  相似文献   

18.
Movement of extracellular Ca2+ is required for the sustained increase in [Ca2+]i necessary for T cell activation. However, the mechanisms mediating mitogen-stimulated Ca2+ movement into T cells have not been completely delineated. To explore the possibility that a Na(+)-dependent Ca2+ (Na+/Ca2+) exchanger might play a role in the mitogen-induced increases in [Ca2+]i required for T cell activation, the effects of inhibitors of this exchanger were examined. Inhibitors of Na+/Ca2+ exchange suppressed the sustained increase in [Ca2+]i stimulated by ligation of the CD3-TCR complex, but did not affect mobilization of intracellular Ca2+ stores. Consistent with the importance of this prolonged increase in [Ca2+]i in T cell activation, Na+/Ca2+ exchange inhibitors, but not inhibitors of the Na+/H+ antiporter, inhibited DNA synthesis stimulated by immobilized anti-CD3 mAb. Inhibition only occurred when the agents were present during the first hours after stimulation. These agents also inhibited IL-2 production, but not expression of the IL-2R or of an early activation Ag, 4F2. Inhibition of IL-2 production did not account for the inhibition of T cell proliferation as addition of exogenous IL-2 or phorbol ester (PDB) did not overcome the inhibition. In contrast, activation pathways that are not thought to require an increase in [Ca2+]i such as IL-1 + PDB or engagement of CD28 in the presence of PDB were less sensitive to the suppressive effects of inhibitors of Na+/Ca2+ exchange. Thus, proliferation induced by these stimuli was not suppressed by low concentrations of these inhibitors and IL-2 production induced by mAb to CD28 + PDB was not inhibited by any concentration of inhibitors of Na+/Ca2+ exchange. These results suggest that stimulation of a Ca2+ transporter with the same spectrum of inhibition as the Na+/Ca2+ exchanger in other tissues mediates the sustained increase in [Ca2+]i required for T cell activation after CD3 ligation.  相似文献   

19.
Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic or organellar membranes of virtually all living cells. They are essential for control of cellular pH, volume homeostasis, and regulation of Na+ levels. Na+/H+ antiporters have become increasingly characterized and are now becoming important drug targets. The recently identified NhaP family of Na+/H+ antiporters, from the CPA1 superfamily, contains proteins with a surprisingly broad collective range of transported cations, exchanging protons for alkali cations such as Na+, Li+, K+, or Rb+ as well as for Ca2+ and, possibly, NH4+. Questions about ion selectivity and the physiological impact of each particular NhaP antiporter are far from trivial. For example, Vc-NhaP2 from Vibrio cholerae has recently been shown to function in vivo as a specific K+/H+ antiporter while retaining the ability to exchange H+ for Na+ and bind (but not exchange with H+) Li+ in a competitive manner. These and other findings reviewed in this communication make antiporters of the NhaP type attractive systems to study intimate molecular mechanisms of cation exchange. In an evolutionary perspective, the NhaP family seems to be a phylogenetic entity undergoing active divergent evolution. In this minireview, to rationalize peculiarities of the cation specificity in the NhaP family, the "size-exclusion principle" and the idea of "ligand shading" are discussed.  相似文献   

20.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号