首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Purified troponin (Tn), the complex of the Ca-2+ binding subunit (TnC), the inhibitory subunit (TnI), and the tropomyosin binding subunit (TnT) binds 4 mol of Ca-2+ per mol. Two sites bind Ca-2+ with a binding constant of 5 times 10-8 M- minus 1, and two with a binding constant of 5 times 10-6 M- minus 1. In the presence of 2 mM MgCl2 the binding to four sites can be characterized with a single affinity constant of 5 times 10-6 M- minus 1. Purified TnC also binds 4 mol of Ca-2+ per mol; two sites have a binding constant of 2 times 10-7 M- minus 1 and two have one of 2 times 10-5 M- minus 1. In the presence of 2 mM MgCl2 the binding constant of the sites of higher affinity is reduced to 2 times 10-6 M- minus 1, while Ca-2+ binding to the sites of lower affinity is unaffected. Assuming competition between Mg-2+ and Ca-2+ for the high affinity sites on TnC and Tn, the changes in Ca-2+ binding can be accounted for with KMg values of 5 times 10-3 M- minus 1 and 5 times 10-4 M- minus 1, respectively. Tn and TnC bind 4 mol of Mg-2+ per mol in the absence of Cs-2+. The fact that at [Ca-2+] similar to 10- minus 5 M four Ca-2+ and only two Mg-2+ are bound per mol of TnC in the presence of 2 mM Mg-2+ further supports the view that there is direct competition between Mg-2+ and Ca-2+ for the high affinity Ca-2+ binding sites on TnC and Tn. These results then suggest that Tn and TnC contain six divalent cation binding sites: two high affinity Ca-2+ binding sites that also bind Mg-2+ competitively (Ca-2+-Mg-2+ sites); two sites with lower affinity for Ca-2+ that do not bind Mg-2+ (Ca-2+-specific sites); and two sites that bind Mg-2+ but not Ca-2+ (Mg-2+-specific sites). The complex of TnC and TnI (1:1 molar ratio) has the same binding properties as Tn, suggesting a conformational change in TnC upon interaction with TnI. Studies on myofibrillar ATPase activity as a function of free Ca-2+ concentration at two different free Mg-2+ concentrations suggest that full activation by Ca-2+ occurs only upon binding of Ca-2+ to the two Ca-2+-specific binding sites in Tn but does not require binding of Ca-2+ to the Ca-2+-Mg-2+ sites.  相似文献   

3.
A large fraction of the Ca-2plus- and Mg-2plus-dependent ATPase (EC 3.6.1.3) in sarcoplasmic reticulum membranes solubilized with Triton X-100 was phosphorylated with Pi. The phosphorylation required Mg-2plus but was strongly inhibited by low concentrations of Ca-2plus. A Ca-2plus ion concentration of 30 muM caused half-maximum inhibition in the presence of 50 mM MgCl2. The phosphorylated enzyme showed a rapid turnover and was in dynamic equilibrium with Pi in the medium. At equilibrium the amount of the phosphorylated enzyme increased markedly with increased in the reaction temperature. The apparent standard free energy change, the apparent standard enthalpy change, and the apparent standard entropy change in the formation of the phosphorylated enzyme from the enzyme-phosphate complex in the presence of excess Mg-2plus at 37 degrees and pH 7.0 were, respectively, 0.35 Cal per mol, 15.9 Cal per mol, and 50.2 e.u. per mol. The susceptibility of the acid-denatured phosphorylated enzyme to hydroxylamine showed that the phosphorylated enzyme is of an acyl phosphate type. The present results are consistent with the probability that the phosphorylation results from reversal of late steps in the Ca-2plus transport process. The results clearly show that the phosphorylated enzyme is stabilized by a great increase in entropy upon its formation from the enzyme-phosphate complex.  相似文献   

4.
N,N'-dicyclohexylcarbodiimide (DCCD) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (CMCD) inhibited calmodulin-dependent Ca2(+)+Mg2(+)-ATPase activity in erythrocyte ghost membranes. The extent of the inhibition caused by carbodiimides strongly depended on their hydrophobicity. Hydrophobic DCCD was a more potent inhibitor then hydrophilic CMCD. Calmodulin (CaM) protected the enzyme against the former carbodiimide, whereas Ca2+ did the same against the latter. In contrast to previous observations made by Villalobo et al., on the purified enzyme, neither carbodiimide affected the calmodulin-independent ATPase activity in ghost membranes. Inhibition of the calmodulin-dependent ATPase activity was due to a decrease of the maximum activity, whereas the Km value for Ca2+ remained unchanged. Titration of erythrocyte ghost membranes with CaM revealed a biphasic response of ATPase to this activator. Two affinity constants were found for CaM, 0.64 nM and 14 nM. DCCD affected the interaction with CaM at high- and low-affinity binding sites in a competitive manner. CMCD acted as a noncompetitive inhibitor for CaM low-affinity sites, whereas it behaved in a competitive way against CaM interaction with high-affinity sites. In E2 form (stabilized by vanadate and EGTA) ATPase was more sensitive to carbodiimides than in E1 form (induced by La3+).  相似文献   

5.
The activation of the action potential Na+ ionophore by veratridine and batrachotoxin is time- and concentration-dependent and completely reversible. Batrachotoxin acts more slowly than veratridine. The concentration dependence of activation at equilibrium suggests reversible interaction of each toxin with a single class of independent sites having dissociation constants at physiologic ion concentrations of 80 plus or minus 13 muM for veratridine and 0.4 plus or minus muM for batrachotoxin. The maximum velocity of Na+ uptake at 50 mM Na+ is 128 plus or minus 12 nmol/min/mg in the presence of batrachotoxin compared to 48 plus or minus 4 nmol/min/mg in the presence of veratridine. Treatment of cells with excess veratridine in addition to batrachotoxin inhibits batrachotoxin-dependent 22-Na+ uptake. The concentration dependence of this inhibition suggests that it reflects competitive displacement of batrachotoxin from its binding site by veratridine. The activation by veratridine and batrachotoxin is inhibited in a competitive manner by divalent cations. The inhibition by divalent cations exhibits significant ion specificity with Mn-2+ greater than Co-2+ greater than Ni-2+ greater than Ca-2+ greater than Mg-2+ greater than Sr-2+. The inhibition constants (KI) for Ca-2+ are 0.84 mM for veratridine-dependent 22-Na+ uptake and 1.2 mM for batrachotoxin-dependent 22-Na+ uptake. The activation by veratridine and batrachotoxin is inhibited in a noncompetitive manner by tetrodotoxin. The apparent KD for tetrodotoxin as 11 plus or minus 1 nM in the presence of 150 mM Na+ and approximately 8.5 nM in 50 mM Na+. Divalent cations do not affect the apparent KD for tetrodotoxin. A hypothesis is presented which suggests that batrachotoxin, veratridine, and divalent cations interact with an activation site associated with the action potential Na+ ionophore, whereas tetrodotoxin interacts with a physically and functionally independent site involved in the transport of monovalent cations by the ionophore.  相似文献   

6.
A purified preparation of sarcoplasmic reticulum from rabbit skeletal muscle has been found to consist of a heterogeneous population of vesicles. Isopycnic centrifugation was used to obtain "light" and "heavy" vesicles from the upper and lower ends of a 25 to 45% (w/w) linear sucrose gradient. Each fraction accounted for about 10 to 15% of the total vesicles. The remainder of the vesicles were of intermediate density and banded between the light and heavy fraction. Light vesicles were composed of about equal amounts of phospholipid and Ca-2+ pump protein which contained approx. 90% of the protein. Heavy vesicles contained in addition to the Ca-2+ pump protein (55-65% of the protein) two other major protein components, the Ca-2+ binding and M55 proteins which accounted for 20-25 and 5-7% of the protein of these vesicles, respectively. The sarcoplasmic reticulum subfractions had 32-P-labelled phosphoenzyme levels proportional to their Ca-2+ pump protein content and contained similar Ca-2+-stimulated ATPase activities. They were capable of accumulating Ca-2+ in the presence of ATP and of releasing the accumulated Ca-2+ when placed into a medium with a low Ca-2+ concentration. The vesicles differed significantly in that heavy vesicles had a greater number of non-specific Ca-2+ binding sites than light vesicles (approx. 220 vs 75 nmol of bound Ca-2+ per mg protein), in accordance with their high content of Ca-2+ binding protein. Electron dense material could be seen within the compartment of heavy but not light vesicles. Removal of Ca-2+ binding and M55 proteins from heavy vesicles resulted in empty membranous structures consisting mainly of Ca-2+ pump protein and phospholipid. Electron micrographs of sections of muscle showed dense material in terminal cisternae but not in longitudinal sections of sarcoplasmic reticulum. These experiments are consistent with the interpretation that (1) the electron dense material inside heavy vesicles may be referable to Ca-2+ binding and/or M55 proteins, and that (2) light and heavy vesicles may be derived from the longitudinal sections and terminal cisternae of sarcoplasmic reticulum, respectively.  相似文献   

7.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition.  相似文献   

8.
The present work is an extension of our precedent papers (1-3). In the present report the relationship was studied between the inhibition by 3H-NQNO, 3-3H-2-n-nonyl-4-hydroxy-quinoline-N-oxide, of the respiratory activity induced in submitochondrial particles from beef heart by NADH and the binding of 3H-NQNO to the specific binding site. The experiments showed that the concentrations of inhibition sites and of specific binding sites are identical. Titrating the inhibition of NADH-oxidase activity with increasing amounts of 3H-NQNO a close connection was observed between the decrease of the respiratory activity and the increase of the specific binding of 3H-NQNO. When nearly full inhibition (85%) was reached, also the specific binding was saturated. We may conclude that 3H-NQNO behaves like an ideally simple inhibitor: the inhibition of electron transfer by 3H-NQNO is linear with the saturation of the specific binding site.  相似文献   

9.
Incubation of etythrocyte ghosts with carbonylcyanide m-chlorophenyl-hydrazone (CCCP) plus Ca-2+ resulted in inactivation of the Ca-2+ -stimulated ATPase activity. Omission of Ca-2+ or lowering of the temperature below 25 degrees C eliminated the inhibitory effect, as also did the presence of ATP during the incubation. On the other hand, the addition of beta-mercaptoethanol did not influence the Ca-2+ -dependent inhibition by CCCP. Compared with the level of CCCP which uncouples oxidative phosphorylation, a rather high level (0.5 mM) of CCCP was required to inhibit the ATPase activity in ghosts. However, once the inhibition had been accomplished, almost all of the CCCP could be removed from the ghost membrane by washing with a Ca-2+ -containing solution, without affecting the inhibition of ATPase. If ethylene-glycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid was included in the washing medium, the inhibition of ATPase was nearly completely reversed by washing. The results indicate that only the Ca-2+ -stimulated, Mg-2+ -ATPase was inhibited by 0.5 mM CCCP, while the remaining components of the ATPase activity were slightly inhibited by higher levels of the uncoupler. Low levels of CCCP (0.1 mM) stimulated the Mg-2+ -ATPase slightly. CCCP was much more specific for the Ca-2+ -stimulated ATPases than N-(1-naphthyl)maleimide, an unusually effective sulfhydryl reagent, and the requirement of Ca-2+ for inactivation was also quite specific.  相似文献   

10.
Summary We have used a combination of chemical labeling and detergent fractionation techniques to locate the divalent cation binding sites on the chloroplast membrane. We determined the Ca2+-binding properties of Triton X-100 subchloroplast particles. Photosystem II (TSFII) particles showed one binding site withn=8.4 moles-mg chl–1 andk d =20 m. Photosystem I (TSFI) particles contained two binding sites. The first had ann=1.5 moles-mg chl–1 andk d =4 m. The second had ann=9.6 moles-mg chl–1 andk d =160 m. We have previously shown (Prochaska & Gross,Biochim. Biophys. Acta 376:126, 1975) that the divalent cation binding sites could be blocked using a water-soluble carbodiimide plus a nucleophile. Chlorophylla fluorescence and lightscattering changes were affected at the same carbodiimide concentrations emphasizing the relationship between these processes. The carbodiimide-sensitive sites were found to be located on the Photosystem II particles. A direct correlation between the inhibition of calcium binding and the carbodiimide-mediated incorporation of a (14C)-nucleophile was observed upon varying such parameters as carbodiimide concentration, nucleophile concentration, pH, and time of reaction. The presence of CaCl2 during the carbodiimide plus nucleophile modification procedure decreased the incorporation of (14C)-nucleophile, emphasizing the competition of the CaCl2 and the modification reagents for some of the same sites. Sodium dodecylsulfate gel electrophoresis of chlorophyll protein aggregates suggested that the site of competition of the calcium chloride and the modification reagents was the light-harvesting chlorophylla/b protein.  相似文献   

11.
An examination of the effect of dibutylchloromethyltin/chloride on the carbodiimide binding proteolipid of mitrochondrial ATPase has revealed that in the presence of the alkyltin, (1) binding of dicyclohexycarbodiimide is decreased (2) the electron spin resonance spectrum of a nitroxide analogue of dicyclohexylcarbodiimide exhibits line broadening characteristic of either an increase of polarity or a decrease in viscosity of the carbodiimide binding site (3) the rate of reduction of the nitroxide probe by ascorbate is increased threefold. These phenomena suggest a possible mode of action for the inhibition of ATP synthesis by alkyltins.  相似文献   

12.
Nichols DJ  Keeling PL  Spalding M  Guan H 《Biochemistry》2000,39(26):7820-7825
Chemical modification of maize starch synthase IIb-2 (SSIIb-2) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), which modifies acidic amino acid residues, resulted in a time- and concentration-dependent inactivation of SSIIb-2. ADPGlc was found to completely protect SSIIb-2 from inactivation by EDAC. These results suggest that glutamate or aspartate is important for SS activity. On the basis of the sequence identity of SS, conserved acidic amino acids were mutagenized to identify the specific amino acid residues important for SS activity. Three amino acids (D21, D139, and E391) were found to be important for SS activity. D21N showed 4% of the wild-type enzyme activity and a 10-fold decrease in the affinity for ADPGlc, while the conservative change from D21 to E resulted in a decrease in V(max) and no change in affinity for ADPGlc, suggesting that the negative charge is important for ADPGlc binding. When sites D139 and E391 were changed to their respective amide form, no SS activity was detected. With the conservative change, D139E showed a decrease in V(max) and no changes in apparent K(m) for substrates. E391D showed a 9-fold increase in K(m) for ADPGlc, a 12-fold increase in apparent K(m) for glycogen, and a 4-fold increase in apparent K(m) for amylopectin. The circular dichroism analysis indicates that these kinetic changes may not be due to a major conformation change in the protein. These results provide the first evidence that the conserved aspartate and glutamate residues could be involved in the catalysis or substrate binding of SS.  相似文献   

13.
Y Hochman  C Carmeli 《Biochemistry》1981,20(22):6293-6297
Bicarbonate, maleate, and phosphate were shown to modulate adenosinetriphosphatase (ATPase) activity in coupling factor 1 from chloroplasts. Kinetic analysis of the changes in the ratio between the apparent Km with and without effectors indicated that the stimulation of the activity by bicarbonate was a result of a decrease in the Km for MnATP2-. The inhibition by phosphate resulted from a decrease in the Ki for free ATP as a competitive inhibitor at pH 8. THe effectors did not change Vmax at this pH. However, at pH 6.5, both Km and Vmax of ATPase activity with MnATP2- were changed by maleate, yet the mode of inhibition by free ATP remained unaltered. In addition to decreasing the Km, bicarbonate induced a 10-fold decrease in the Kd for binding of Mn2+ at the two tight binding sites in the presence of ATP at pH 8. At pH 6.5, maleate also decreased both the Km for MnATP2- and the Kd for Mn2+ binding. A decrease in the Km of a substrate induced by an effector is likely to be a result of a decrease in the binding constant of the substrate. Therefore, these results are in harmony with the suggested assignment of the two tight binding sites of Mn2+ at the active sites of the enzyme.  相似文献   

14.
Age-related changes in alpha 1-, alpha 2-, and beta-catecholamine receptors on membrane of rat epididymal fat cells were investigated. Both young (6 weeks old, weight about 190 g) and aged (20 weeks old, weight about 490 g) Sprague-Dawley male rats were used. For the alpha 1-adrenoceptor binding experiment, we developed a novel analytical method using the hydrophilic alpha 1-receptor selective antagonist, [3H]bunazosin. The binding of [3H]bunazosin to its binding sites was rapid, reversible, saturable, and stereospecific. Scatchard binding analysis showed a single class of binding site. The sites were characterized as alpha 1-adrenoceptors by inhibition experiments using various agonists and antagonists. The number of maximum binding sites (Bmax) of alpha 1-receptor binding was 37.0 +/- 6.5 (young) versus 24.0 +/- 3.2 (aged) fmol/mg protein (P less than 0.01). [3H]Rauwolscine and [3H]CGP-12177 were used for alpha 2- and beta-receptor binding, respectively. In alpha 2-receptor detection using [3H]rauwolscine as a ligand, Bmax increased markedly from 19.8 +/- 4.9 to 86.2 +/- 19.5 fmol/mg protein (P less than 0.01). In contrast, Bmax for beta-receptor decreased from 69.7 +/- 9.7 to 45.4 +/- 13.9 fmol/mg protein with increasing rat age (P less than 0.05). Kd showed no change in each of the binding experiments between young and aged rats. The cell volume increased from 0.07 +/- 0.02 to 0.15 +/- 0.06 nl. It is implied that anti-lipolytic activity strengthened on the whole mainly with the marked increase of alpha 2-receptor number and decrease of beta-receptor number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The role of divalent cations in the regulation of the distribution of excitation energy between the two photosystems involved in green plants photosynthesis has led us to search for a better understanding of how such phenomena might occur at the molecular level. Since small changes in orientation of and distance between pigment molecules could greatly affect the distribution of excitation energy, we have decided to study the effects of ions on the light-harvesting pigment protein from spinach chloroplasts. The light-harvesting pigment protein is shown to have two types of binding sites for Ca-2+. Binding studies and analytical ultracentrifugation indicate that site I (K-d equals 2.5 mu-M, n equals 1.5-4.0 mu-mol Ca-2+ bound/mg chlorophyll) is lost as the protein associates. Site II (K-d equals 32 mu-M, n equals 9,5 mu-mol Ca-2+/mg chlorophyll) is not affected by the association of the protein. This site is responsible, however, for a further divalent cation-dependent association of the protein. The possible role of this protein in grana stacking and control of spillover is discussed.  相似文献   

16.
Age-related changes in binding of 125I-bovine GH to liver membrane fractions were measured in female Long-Evans rats 2, 6, 12 and 20 months of age. Specific GH binding did not change between 2 and 6 months of age but increased significantly at 12 and 20 months of age. Scatchard analysis showed that the plots were curvilinear and consisted of high- and low-affinity binding sites. The age-related increases in binding sites were mainly due to an increase in number of low-affinity binding sites. Serum somatomedin-C (SM-C) levels in 20-month-old rats were about half those in the 6-month-old rats. Twice daily injections of ovine GH (2 mg/kg body wt) for 7 days depressed liver GH binding and increased serum SM-C levels in 19-month-old female rats, but had no effect on GH binding in 2-month-old female rats. These results suggest that the increase in liver GH binding sites and the decrease in SM-C secretion are associated with our previously reported decrease in GH secretion in old female rats.  相似文献   

17.
Human plasma cholinesterase was found to be inhibited by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in a biphasic manner. The faster phase of the inhibition led to loss of approximately 50% of the activity (measured at pH 7.0, 30 degrees C, using 2.5 mM butyrylthiocholine) and was irreversible. Inhibition in the slower phase was reversible by 0.25 M hydroxylamine. The protective effect of 1 mM propranolol indicated that the target residue in both phases was localized at the active site. Lineweaver-Burk plots for butyrylthiocholine were obtained at different times during the course of inactivation. It was found that for both native and partially inactivated enzymes the plots could be analyzed in terms of two activities showing hyperbolic saturation with the substrate, with Km values of 0.055 +/- 0.015 and 2.0 +/- 0.2 mM. The carbodiimide affected the maximal velocities of the component activities, leaving the Km's unchanged. The low-Km component was lost in the first phase of the inactivation. The loss of the high-Km component paralleled the second phase. It was concluded that the active sites in the tetrameric enzyme form two classes, differing in their affinity for butyrylthiocholine and their susceptibility to inhibition by the active site-directed carbodiimide.  相似文献   

18.
The changes in alpha adrenoceptors in vasa deferentia of reserpinized rats in organ culture were examined by binding studies with 3H-clonidine, 3H-yohimbine and 3H-prazosin. On organ culture for 1 day, the 3H-clonidine binding sites decreased by 1.07 pmol/g tissue and after 2 days no binding sites were detectable. 3H-Yohimbine binding sites also decreased during culture, but in smaller extent than 3H-clonidine binding sites. On the other hand, 3H-prazosin binding sites showed no apparent change in amount during culture. Addition of 0.1 mM hydrocortisone or dexamethasone to the culture medium inhibited the decrease in 3H-clonidine binding sites (1.7 pmol/g tissue), and the effect of glucocorticoid was blocked by the inhibitors of protein synthesis, cycloheximide and puromycin. However, hydrocortisone showed no effect on the 3H-yohimbine and the 3H-prazosin binding sites. An anti-endocytotic agent, an anti-microtubular agent and protease inhibitors had no effects on the decrease of 3H-clonidine binding sites during culture. These results suggest that the amount of alpha-2 adrenoceptors can change rapidly while alpha-1 adrenoceptors are stable and that glucocorticoids are important in regulation of conformation of alpha-2 adrenoceptor through synthesis of certain protein(s).  相似文献   

19.
1. Binding of Ca-2+ to goblet cell mucin of rat small intestine was studied using equilibrium dialysis against 0.01 M Tris/HCl buffer (pH 7.4) and tracer amounts of 45-CaCl2. Binding was found to reach saturation at a Ca free -2+ concentration of 0.1--1.0 mM, to be independent of temperature (4-37 degrees C), and to increase with increasing pH (5.0-8.7). At low concentrations of Ca free -2+ (smaller than 0.03 mM) the binding curve was sigmoidal, suggesting positive cooperativity of binding sites and a possible change in the tertiary structure of the mucin. Binding was markedly reduced, and sigmoidicity abolished, by removal of sialic acid from the mucin, or by adding 0.14 M NaCl to the dialysis medium. This latter finding suggests that, in vivo, other cations would compete for Ca-2+ binding ligands. 2. Under conditions mimicking those used for binding studies, CaCl2 (10- minus 5 M) was found to cause a small increase (0.03 units) in the absorbance of mucin solutions, especially in the ultraviolet region, possibly indicating increased light scattering. No change in the solubility of the mucin was observed after the addition of CaCl2 (10- minus 6-10- minus 4 M). A significant decrease in viscosity of the mucin was noted, however, with the addition of CaCl2 (10- minus 6-10- minus 2 M). Together with the binding data, these findings suggested that during binding, Ca-2+ combines with negative charges on goblet cell mucin (especially those of sialic acid carboxyl groups) and induces contraction or folding of the macromolecule which promotes cooperative cation binding. No evidence was obtained to suggest that CaCl2 caused precipitation, polymerization or gelation of the mucin in 0.01 M Tris/HCl.?  相似文献   

20.
The conventional model for transport of Ca(2+) by the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) involves a pair of binding sites for Ca(2+) that change upon phosphorylation of the ATPase from being high affinity and exposed to the cytoplasm to being low affinity and exposed to the lumen. However, a number of recent experiments suggest that in fact transport involves two separate pairs of binding sites for Ca(2+), one pair exposed to the cytoplasmic side and the other pair exposed to the lumenal side. Here we show that the carbodiimide 1-ethyl-3-[3-(dimethylamino)-propyl] carbodiimide (EDC) is membrane-impermeable, and we use EDC to distinguish between cytoplasmic and lumenal sites of reaction. Modification of the Ca(2+)-ATPase in sealed SR vesicles with EDC leads to loss of ATPase activity without modification of the pair of high affinity Ca(2+)-binding sites. Modification of the purified ATPase in unsealed membrane fragments was faster than modification in SR vesicles, suggesting the presence of more quickly reacting lumenal sites. This was confirmed in experiments measuring EDC modification of the ATPase reconstituted randomly into sealed lipid vesicles. Modification of sites on the lumenal face of the ATPase led to loss of the Ca(2+)-induced increase in phosphorylation by P(i). It is concluded that carboxyl groups on the lumenal side of the ATPase are involved in Ca(2+) binding to the lumenal side of the ATPase and that modification of these sites leads to loss of ATPase activity. The presence of MgATP or MgADP leads to faster inhibition of the ATPase by EDC in unsealed membrane fragments than in sealed vesicles, suggesting that binding of MgATP or MgADP to the ATPase leads to a conformational change on the lumenal side of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号