首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GLUT1, the erythrocyte glucose transporter, and GLUT4, the adipose/muscle transporter, were each expressed in NIH-3T3 cells by retrovirus-mediated gene transfer. In fibroblasts overexpressing GLUT1, basal as well as insulin-stimulated deoxyglucose uptake was increased. Expression of GLUT4 was without affect on either basal or hormone stimulated hexose uptake. Localization of each of the transporters by indirect immunofluorescence revealed that, whereas GLUT1 was found primarily on the cell surface, GLUT4 was directed to vesicles in a perinuclear distribution and throughout the cytoplasm. The GLUT4-containing compartment represented neither Golgi complex nor lysosomes, as evidenced by the failure of lgp110 or Golgi mannosidase to co-localize. However, there was substantial overlap between the distribution of GLUT4 and the transferrin receptor, and some colocalization of the transporter isoform with the manose-6-phosphate receptor. In addition, when FITC-wheat germ agglutinin bound to the cell surface was allowed to internalize at 37 degrees C, it concentrated in vesicular structures coincident with GLUT4 immunoreactivity. These data establish that GLUT1 and GLUT4 contain within their amino acid sequences information which dictates targeting to distinct cellular compartments. Moreover, GLUT4 can be recognized by those cellular factors which direct membrane proteins to the endosomal pathway.  相似文献   

2.
3.
Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as two isoforms, iso-1 and iso-2, which are both expressed primarily in the promastigote stage of the life cycle. These two isoforms constitute modular structures: they differ exclusively and extensively in their NH2-terminal hydrophilic domains, but the remainder of each isoform sequence is identical to that of the other. We have localized these glucose transporters within promastigotes by two approaches. In the first method, we have raised a polyclonal antibody against the COOH-terminal hydrophilic domain shared by both iso-1 and iso-2, and we have used this antibody to detect the transporters by confocal immunofluorescence microscopy and immunoelectron microscopy. The staining observed with this antibody occurs primarily on the plasma membrane and the membrane of the flagellar pocket, but there is also light staining on the flagellum. We have also localized each isoform separately by introducing an epitope tag into each protein sequence. These experiments demonstrate that iso- 1, the minor isoform, resides primarily on the flagellar membrane, while iso-2, the major isoform, is located on the plasma membrane and the flagellar pocket. Hence, each isoform is differentially sorted, and the structural information for targeting each transporter isoform to its correct membrane address resides within the NH2-terminal hydrophilic domain.  相似文献   

4.
5.
Facilitative glucose transporters: an expanding family   总被引:29,自引:0,他引:29  
The uptake of glucose into most eukaryotic cells is accomplished by a carrier-mediated transport system, facilitative diffusion, which transports glucose down its chemical gradient in a stereospecific manner. Recent studies have shown that facilitative transport of glucose across the plasma membrane is mediated by a family of structurally related proteins. This review summarizes the structural and functional features of the family of facilitative glucose transporters.  相似文献   

6.
A number of drugs are regarded as possessing local activity because their effects take place at an extremely short distance from their location site in the cell. The response of different cellular compartments to these effects is different. Such substances as photosensitizers (PSs), which are used in photodynamic cancer therapy, should be targeted to the cell compartments where their effect is the most pronounced. This study describes the construction and properties of the chimeric modular recombinant transporters (MRTs) expressed in Escherichia coli and used for PS targeting. These constructs include (1) the alpha-melanocyte-stimulating hormone as a ligand module, which is internalized by the target cells (mouse melanoma); (2) the optimized SV40 large T-antigen nuclear localization signal; (3) the hemoglobin-like protein from E. coli as a carrier module; (4) the endosomolytic module, the translocation domain of the diphtheria toxin. These MRTs were used for PS targeting to the mouse melanoma cell nuclei, the most PS-damaged intracellular compartment, which resulted in a PS photocytotoxic effect increase of several orders of magnitude. In our opinion, MRTs, which target locally active drugs into the desired cell compartment and thereby enhance the drug response, represent a new generation of the pharmacological agents.  相似文献   

7.
《Inorganica chimica acta》2006,359(5):1603-1612
The coupling reactions of d-glucosamine, 1,3,4,6-tetra-O-acetylglucosamine, and 4-aminophenyl-galactopyranosine with N,N-bis(quinolinoyl)aminovaleric acid (L1) provided a series of conjugates containing a potentially tridentate donor group terminus linked to a sugar moiety, L2′, L2 and L3, respectively. Reactions of the ligands with [NEt4]2[Re(CO)3Br3] in refluxing methanol provided the rhenium complexes [Re(CO3)(L1)]Br (ReL1), [Re(CO)3(L2)]Br (ReL2), [Re(CO)3(L2′)]Br (ReL2′) and [Re(CO)3(L3)]Br (ReL3). The ligands and complexes were characterized by elemental analyses, 1H and 13C NMR, mass spectroscopy and, in the case of L1 and ReL1, by X-ray crystallography. The rhenium complexes exhibit fluorescence emissions with long lifetimes, large Stokes shifts, and moderate quantum yields.  相似文献   

8.
Photodynamic therapy (PDT) is a treatment method using light and photosensitizers (PSs), which is categorized as a non-invasive surgery treatment for cancers. When the tumor is exposed to a specific light, the PSs become active and generate reactive oxygen species (ROS), mainly singlet oxygen which kills nearby cancer cells. PDT is becoming more widely recognized as a valuable treatment option for localized cancers and pre-cancers of skin as it has no long-term effects on the patient. But, due to the limited penetration rate of light into the skin and other organs, PDT can’t be used to treat large cancer cells or cancer cells that have grown deeply into the skin or other organs. Hence, in this study, our focus centers on synthesizing glucose-conjugated phthalocyanine (Pc) compatible with near-infrared (NIR) irradiation as second-generation photosensitizer, so that PDT can be used in a wider range to treat cancers without obstacles.  相似文献   

9.
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.  相似文献   

10.
It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C(2)C(12) myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C(2)C(12) myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation ( approximately 3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C(2)C(12) myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C(2)C(12) myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C(2)C(12) myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.  相似文献   

11.
This study evaluated the effect of antimicrobial photodynamic therapy (aPDT) on S. mutans using diacetylcurcumin (DAC) and verified DAC toxicity. In vitro, S. mutans biofilms were exposed to curcumin (CUR) and DAC and were light-irradiated. Biofilms were collected, plated and incubated for colony counts. DAC and CUR toxicity assays were conducted with Human Gingival Fibroblast cells (HGF). In vivo, G. mellonella larvae were injected with S. mutans and treated with DAC, CUR and aPDT. The hemolymph was plated and incubated for colony counts. Significant reductions were observed when DAC and CUR alone were used and when aPDT was applied. HGF assays demonstrated no differences in cell viability for most groups. DAC and CUR reduced the S. mutans load in G. mellonella larvae both alone and with aPDT. Systematic toxicity assays on G. mellonella demonstrated no effect of DAC and CUR or aPDT on the survival curve.  相似文献   

12.
The PTR family: a new group of peptide transporters   总被引:21,自引:0,他引:21  
The transport of peptides into cells is a well-documented biological phenomenon which is accomplished by specific, energy-dependent transporters found in a number of organisms as diverse as bacteria and humans. Until recently, the majority of peptide transporters cloned and characterized were found to be proteins of the ATP-binding cassette (ABC) family. We report the identification of a new family of peptide transporters, which we call the PTR family. This group of proteins, distinct from the ABC-type peptide transporters, was uncovered by sequence analyses of a number of recently discovered peptide transport proteins. Alignment of these proteins demonstrated a high number of identical and similar residues and identified conserved glycosylation and phosphorylation sites, as well as a structural motif unique to this group of proteins. Cluster analysis among the proteins indicated these sequences were indeed related and could be further divided into two subfamilies. A phylogenetic analysis of these new peptide transport sequences, compared to over 50 other peptide and membrane-bound transporters, showed that these proteins comprise a distinct, separate group of proteins.  相似文献   

13.
It has been known for 80 years that cancer cell growth in an energy-related process supported by an increased glucose metabolism. This phenomenon suggests a need for a corresponding increased uptake of glucose across the plasma membrane through an enhancement in the glucose transporter proteins, SGLT proteins as well as GLUT proteins. The results of many studies have demonstrated that the expression of glucose transporters, especially GLUT1, is increased in a variety of malignancies. GLUT1 overexpression has been found to be associated with tumor progression. It was found that GLUT1 overexpression is associated with poor overall survival in various malignant tumors.  相似文献   

14.
Regulation of glucose transporters in diabetes   总被引:2,自引:0,他引:2  
It is now widely accepted that insulin stimulates glucose metabolism in its target tissues via recruitment of transporters from a large intracellular pool to the plasma membrane. Recent studies, however, suggest a two-step model for insulin action, of transporter translocation and transporter activation. Data confirming this hypothesis for the first time are presented. It is shown that insulin significantly enhances the intrinsic activity of glucose transporters in human and rat adipose cells, in physiological as well as in diabetic state. The functional activity of transporters is impaired in the diabetic state, but surprisingly, 'diabetic' transporters exhibit normal or even enhanced intrinsic activity. In both noninsulin-dependent diabetes mellitus and streptozotocin-diabetic rats, insulin resistance is associated with 50% transporter depletion in the intracellular pool, thus leading to a decreased number of transporters appearing in the plasma membrane in response to insulin. It is concluded that impaired glucose transport in diabetes is secondary (1) to intracellular transporter depletion, and (2) to the presence of inhibitory factors interfering with the full expression of glucose transporters at the plasma membrane, thus contributing to postreceptor insulin resistance.  相似文献   

15.
The study of facilitative glucose transporters (GLUT) requires carefully done immunological experiments and sensitive molecular biology approaches to identify the various mechanisms which control GLUT expression at the RNA and protein levels. The cloning of species-specific GLUT cDNAs showed that GLUT4 and GLUT1 diverge less among species than other GLUT isoforms. The key role of GLUT in glucose homeostasis has been demonstrated in livestock species. In vitro studies have suggested specific roles of GLUT1 and GLUT3 in avian cells. In vivo studies have demonstrated a regulation of GLUTs (especially of GLUT4) by nutritional and hormonal factors in pigs and cattle, in lactating cows and goats and throughout the foetal life in the placenta and tissues of lambs and calves. All these results suggest that any changes in GLUT expression and activity (such as GLUT4 in muscles) could modify nutrient partitioning and tissue metabolism, and hence, the qualities of animal products (milk, meat).  相似文献   

16.
17.
Flavonoids are well-known antioxidants and free radical scavengers. Their metal-binding activity suggests that they could be effective protective agents in pathological conditions caused by both extracellular and intracellular oxidative stress linked to metal overload. Quercetin is both a permeant ligand via glucose transport proteins (GLUTs) and a high-affinity inhibitor of GLUT-mediated glucose transport. Chelatable “free iron” at micromolar concentrations in body fluids is a catalyst of hydroxyl radical (OH?) production from hydrogen peroxide. A number of flavonoids, e.g., quercetin, luteolin, chrysin, and 3,6-dihydroxyflavone, have been demonstrated to chelate intracellular iron and suppress OH? radical production in Madin Darby canine kidney cells. The most effective chelation comes from the flavonone B ring catechol found in both quercetin and luteolin. We show here that quercetin concentrations of < 1 μM can facilitate chelatable iron shuttling via GLUT1 in either direction across the cell membrane. These siderophoric effects are inhibited by raised quercetin concentrations (> 1 μM) or GLUT inhibitors, e.g., phloretin or cytochalasin B, and iron efflux is enhanced by impermeant extracellular iron chelators, either desferrioxamine or rutin. This iron shuttling property of quercetin might be usefully harnessed in chelotherapy of iron-overload conditions.  相似文献   

18.
Photodynamic therapy (PDT) has been the subject of several clinical studies. Evidence to date suggests that direct cell death may involve apoptosis. T(24) cells (bladder cancer cells, ATCC-Nr. HTB-4) were subjected to PDT with aluminum phthalocyanine tetrasulfonate chloride (AlS(4)Pc-Cl) and red laser light at 670 nm. Morphological changes after PDT were visualized under confocal microscopy. Raman microspectroscopy is considered as one of the newly established methods used for the detection of cytochrome c as an apoptotic marker. Results showed that PDT treated T(24) cells seem to undergo apoptosis after irradiation with 3 J cm(-2). Cytochrome c could not be detected from cells incubated with AlS(4)Pc-Cl using Raman spectroscopy whereas AlS(4)Pc-Cl seems to interfere with the Raman spectrum of cytochrome c.  相似文献   

19.
Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.  相似文献   

20.
The tetraphenyltetracyanoporphyrazine complex of ytterbium has been studied as a potential photosensitizer for fluorescence diagnostics and photodynamic therapy (PDT) of cancer. It has been shown that the new compound has an intensive absorption and fluorescence in the "tissue optical window". In particular, the absorption maximum of the complex is at the wavelength of 590 nm, and the fluorescence emission maximum is at 640 nm. A strong fluorescence enhancement with a 50-fold increase in the quantum yield has been revealed in blood serum. The experiments on human cancer cells line have demonstrated that the complex penetrates the cells in vitro and is located around the nuclei. The biodistribution and pharmacokinetics of the complex in animals have been investigated in vivo by a new method of transillumination fluorescence imaging using a peculiar setup. It has been found that the period of maximum uptake of the complex in mouse cervical carcinoma is from 3 to 6 h after i.v. injection, with the half-life in the tumor being 24 h. However, the selectivity of the complex in the tumor is not high enough. The time of clearance from the body is about 48 h. The area of the strongest fluorescence in the abdominal cavity in in vivo images is anatomically recognized as the intestine. This indicates that the new compounds undergo mainly the hepatic clearance mainly. The conventional methods ex vivo (confocal microscopy and point spectroscopic measurements) have detected the largest content of the complex in the intestine, liver, skin and tumor tissue. In general, the optical characteristics of the ytterbium porphyrazine complex as well as the features of its interaction with biological objects make it promising drug candidate for the photodynamic therapy and/or fluorescence diagnostics of cancer. However, a search for other novel formulations possessing a higher tumor selectivity remains an urgent problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号