首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyamine uptake, the kinetics of this uptake, and the competition among polyamines and between polyamines and inorganic cations were studied in petals of Saintpaulia ionantha Wendl. Uptake experiments using 14C-labeled polyamines were carried out on single petals, at room temperaure (20°C) and in the light. The results show that putrescine, spermidine, and spermine uptake was dependent on the external pH and occurred up to high external polyamine concentrations with Km values of 8.6, 1.2, and 2.1 millimolar, respectively, with spermidine being the most absorbed at low concentration (17 micromolar). Putrescine and spermidine did not seem to compete for the same site of absorption. Furthermore, putrescine and spermidine uptake was not inhibited by Ca2+, Mg2+, and K+ at the same concentrations (17 micromolar), whereas 1.7 millimolar Ca2+ inhibited and K+ enhanced spermidine uptake. The intracellular localization of the absorbed putrescine was determined using two different methods. Very little label was found in the apoplast, while most of it was localized in the 98,500g supernatant. According to our data the vacuole, which represents a substantial part of Saintpaulia parenchyma cells, could be a site of putrescine accumulation. 2,4-Dinitrophenol and diethylstilbestrol did not inhibit uptake; however, at 0°C there was a 35% inhibition of spermidine uptake, compared with the controls kept at 20°C as well as a 68% inhibition with 20 millimolar NaSCN.  相似文献   

2.
Putrescine and spermidine uptake in carrot (Daucus carota L., cv “Tip top”) protoplasts and isolated vacuoles was studied. Protoplasts and vacuoles accumulated polyamines very quickly, with maximum absorption within 1 to 2 minutes. The insertion of a washing layer containing 100 millimolar unlabeled putrescine or spermidine did not change this pattern, but strongly reduced the uptake of putrescine and spermidine in protoplasts and in vacuoles. The dependence of spermidine uptake on the external concentration was linear up to the highest concentrations tested in protoplasts, while that in vacuoles showed saturation kinetics below 1 millimolar (Km = 61.8 micromolar) and a linear component from 1 to 50 millimolar. Spermidine uptake in protoplasts increased linearly between pH 5.5 and 7.0, while there was a distinct optimum at pH 7.0 for vacuoles. Preincubation of protoplasts with 1 millimolar Ca2+ affected only surface binding but not transport into the cells. Nonpermeant polycations such as La3+ and polylysine inhibited spermidine uptake into protoplasts. Compartmentation studies showed that putrescine and spermidine were partly vacuolar in location and that exogenously applied spermidine could be recovered inside the cells. The characteristics of the protoplast and vacuolar uptake system induce us to put forward the hypothesis of a passive influx of polyamines through the plasmalemma and of the presence of a carrier-mediated transport system localized in the tonoplast.  相似文献   

3.
Putrescine uptake in saintpaulia petals   总被引:7,自引:6,他引:1       下载免费PDF全文
Putrescine uptake and the kinetics of this uptake were studied in petals of Saintpaulia ionantha Wendl. Uptake experiments of [3H] or [14C] putrescine were done on single petals at room temperature at various pH values. The results show that putrescine uptake occurs against a concentration gradient at low external putrescine concentration (0.5-100 micromolar) and follows a concentration gradient at higher external putrescine concentrations (100 micromolar to 100 millimolar). 2,4-Dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone, two uncouplers, had no effect on putrescine uptake. Uptake rates were constant for 2 hours, reaching a maximum after 3 to 4 hours. Putrescine uptake depended markedly on the external pH and two maxima were observed: at low external concentrations of putrescine, the optimum was at pH 5 to 5.5; at higher concentrations the optimum was at pH 8.  相似文献   

4.
The specificity and regulation of putrescine transport was investigated in roots of intact maize (Zea mays L.) seedlings. In concentration-dependent transport studies, the kinetics for putrescine uptake could be resolved into a single saturable component that was noncompetitively inhibited by increasing concentrations of Ca2+ (50 micromolar to 5 millimolar). Similarly, other polyvalent cations, including Mg2+ (1.8 millimolar) and La3+ (200 micromolar), almost completely abolished the saturable component for putrescine uptake. This suggests that putrescine does not share a common transport system with other divalent or polyvalent inorganic cations. Further characterization of the putrescine transport system indicated that 0.3 millimolar N-ethyl-maleimide had no effect on putrescine uptake, and 2 millimolar p-chloromercuribenzene sulfonic acid only partially inhibited transport of the diamine (39% inhibition). Metabolic inhibitors, including carbonylcyanide-m-chlorphenylhydrazone (20 micromolar) and KCN (0.5 millimolar), also partially inhibited the saturable component for putrescine uptake (Vmax reduced 48-60%). Increasing the time of exposure to carbonylcyanide-m-chlorphenylhydrazone from 30 minutes to 2 hours did not significantly increase the inhibition of putrescine uptake. Electrophysiological evidence indicates that the inhibitory effect on putrescine uptake by these inhibitors is correlated to a depolarization of the membrane potential, suggesting that the driving force for putrescine uptake is the transmembrane electrical potential across the plasmalemma.  相似文献   

5.
Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-14C]putrescine and [1,4-14C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection.  相似文献   

6.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

7.
This laboratory has previously reported that progesterone can initiate a rapid transient increase in the concentration of intracellular free Ca2+([Ca2+]i) and an increase in a Ca2+-requiring exocytotic event, the acrosome reaction (AR) in human sperm. Rapid increases in Ca2+ fluxes of some mammalian cells caused by another steroid, testosterone, require polyamine biosynthesis. Herein, we tested two polyamine biosynthesis suicide inhibitors for their effects on the progesterone-initiated increase in [Ca2+]i and AR in capacitated human sperm in vitro: DL-α-(difluoromethyl)ornithine hydrochloride (DFMO), an inhibitor of putrescine synthesis by ornithine decarboxylase and (5′-{[(Z))-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine (MDL 73811), an inhibitor of S-adenosylmethionine decarboxylase (required for spermidine and spermine synthesis). Sperm were capacitated in vitro and preincubated 10 min with 4.9 mM DFMO or 9.8 μM MDL 73811 with or without various polyamines (245 μM). Progesterone (3.09 μM final concentration) or progesterone solvent (ethanol, 0.1% final concentration) was then added, sperm fixed 1 min after additions and AR assayed by indirect immunofluorescence or with fluorescein-labeled Con A lectin. DFMO strongly inhibited the AR but putrescine (product of ornithine decarboxylase and precursor of spermidine and spermine) reversed that inhibition. Preincubation for 25 min with DMFO + spermidine also reversed DFMO inhibition. MDL 73811 inhibited the progesterone-initiated AR, and a 10 min preincubation with spermidine, but not putrescine or spermine, reversed that inhibition. Preincubations with putrescine alone or with spermidine alone followed by addition of the progesterone solvent did not initiate the AR, and such preincubations followed by progesterone addition did not increase the AR more than progesterone alone. MDL 73811 and DFMO partially inhibited the rapid progesterone-initiated increase in [Ca2+]i (assayed with fura-2), and those inhibitions were partially reversed by putrescine and spermidine, respectively. Putrescine or spermidine alone did not increase [Ca2+]i nor did preincubation with either polyamine followed by progesterone addition increase [Ca2+]i more than progesterone alone. Neither inhibitor was able to inhibit the AR initiated by the calcium ionophore, ionomycin. Our results suggest that human sperm polyamine biosynthesis is necessary for the progesterone-initiated rapid increase in [Ca2+]i and subsequent membrane events of the AR. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The improvement of the induction rate in Citrus anther culture is important for taking practical advantage of the haploid potential in breeding. The influence of polyamines on anther culture of Citrus clementina, cv Nules, with particular attention to the free, soluble and insoluble-conjugated polyamine levels, has been investigated. Putrescine, spermidine and putrescine plus spermidine, were added to the standard induction medium. Before culture, spermidine was the most abundant among the free polyamines detected in anthers. The exogenous supply of either putrescine or spermidine, either independently or combined, effected greater uptake and accumulation of polyamines. The addition of 2 mM spermidine to the medium stimulated gametic embryogenesis in clementine Nules, whereas putrescine did not influence embryo production. Regenerants were mostly tri-haploids; a few doubled-haploids and no haploid plants were obtained.  相似文献   

9.
The uptake of intracellular putrescine and spermidine was examined in B16 melanoma cells. It was found that difluoromethylornithine preferentially induced putrescine transport (28-fold) compared to that for spermidine (3.5-fold). Putrescine uptake was partially Na+ dependent, whereas spermidine uptake was not. Inhibition studies with the two polyamines showed that putrescine was a poor competitive inhibitor of spermidine uptake, exhibiting a Ki of 69-75 microM, whereas the estimated Km for putrescine uptake was only 5.36 microM. By contrast, spermidine inhibition of putrescine transport produced a non-linear Eadie-Scatchard plot suggesting that putrescine was taken up by a spermidine-sensitive and a spermidine-insensitive process. The estimated spermidine Ki for inhibition of the spermidine-sensitive process was 0.125 microM. Using a series of polypyridinium quaternary salts to inhibit transport, no correlation between inhibition of putrescine uptake and inhibition of spermidine uptake was seen. Finally, the photoaffinity label, 1,12-di(N5-azido-2-nitrobenzoyl)spermine selectively inactivated the putrescine transporter(s) without affecting spermidine uptake. From these observations, it was concluded that multiple polyamine transporters are present on B16 melanoma cells and that separate, distinct transporter(s) account for the uptake of putrescine and spermidine in this cell-line following induction with difluoromethylornithine. The present of different transporters for the two polyamines indicates that expression of uptake activity for putrescine and spermidine may be under separate cellular control.  相似文献   

10.
Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-(14)C]putrescine and [1,4-(14)C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection.  相似文献   

11.
The effects of the natural polyamines, putrescine, spermidine and spermine on single calcium-activated potassium channels from clonal rat pituitary tumor cells (GH3) were studied. Applied to inside-out patches, polyamines were found to reduce the current amplitude and open probability of the channels in a dose- and voltage-dependent manner, indicating that polyamines act as fast blockers which sense a fraction of the electrical field in the channel pore. The K d for spermine was 11.2 mm for the reduction of unitary current amplitude and 0.7 mm for the reduction of the open probability. The order of effectiveness was spermine > spermidine > putrescine. From fitting -functions to current amplitude histograms, blocking and unblocking rates were determined as 11.4 × 104 sec–1 and 21.9 × 104 sec–1, respectively. The reduction of the channel open probability was relieved by an increase of the Ca2+ concentration of the internal solution, indicating that polyamines compete with Ca2+ at the Ca2+ sensor of the channel. Putrescine antagonized the effect of spermine on the channel current amplitude. The results suggest that polyamines at intracellular millimolar concentrations suppress ion channel activity and therefore may effect electrical discharge behavior of excitable cells.This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, P8587.  相似文献   

12.
Summary The kinetics of putrescine and spermidine uptake and the influence of calcium on the kinetic parameters of the transport process were investigated in protoplasts isolated from carrot phloem parenchyma. Spermidine uptake dependence on external concentration was biphasic, both in the absence and in the presence of 1 mM CaCl2. In the first case, saturation was reached at 0.1 to 0.25 mM and the Km value was 43µM. When calcium was added, the Km and Vmax increased. A similar pattern was found with regard to putrescine uptake. Moreover, in order to clarify the mode of action of calcium on polyamine uptake, lanthanides (lanthanum and gadolinium) were utilised as Ca+2-channel antagonists. When protoplasts were preincubated with these lanthanides, the stimulatory effect exerted by Ca+2 on polyamine uptake was almost totally abolished. On the other hand, if lanthanum was supplied instead of calcium, it gave rise to a small enhancement of polyamine transport. These results induce us to suggest that calcium acts on polyamine uptake both by binding to external sites on the plasmalemma and by penetrating into the cell.  相似文献   

13.
Polyamines are mainly transported in the blood by erythrocytes: Putrescine, spermidine and spermine can be taken up in vitro by red blood cells (RBC); their entry is greater in the presence of serum than in the presence of plasma, and spermine entry is lower than that observed for the two other polyamines. In the presence of serum, the affinity of RBC for spermidine is 30 fold greater than that for putrescine. The majority of RBC polyamines are present in the hemolysate and are not complexed to high molecular weight material. At + 4 degrees C the polyamine uptake is considerably reduced and for putrescine and spermine practically non existent, but it seems that it is internalization rather than binding which constitutes the dependent step. Though intracellular spermidine and spermine levels reflect differences in uptake rather than in outward flux across the cell membrane, the values of putrescine appear to be the resultant of influx and efflux. The presence of specific receptor sites for polyamines visualized by SEM on the surface of RBC using latex-putrescine spheres, confirms the results obtained with labelled polyamines. Therefore, only the understanding of the polyamine repartition inside the blood compartments would permit the clinical use of those molecules as non statistical tumor markers.  相似文献   

14.
The effect of polyamines (putrescine, spermine, and spermidine) on the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L. cv. OB1) mitochondria, have been studied. Addition of spermine and/or spermidine to a suspension of mitochondria in a low-cation medium (2 millimolar-K+) caused a decrease in the apparent Km and an increase in the apparent Vmax for the oxidation of exogenous NADH. These polycations released by screening effect the mitochondrially induced quenching of 9-aminoacridine fluorescence, their efficiency being dependent on the valency of the cation (C4+ > C3+). Conversely, putrescine only slightly affected both kinetic parameters of exogenous NADH oxidation and the number of fixed charges on the membranes. Spermine and spermidine, but not putrescine, decreased the apparent Km for Ca2+ from about 1 to about 0.2 micromolar, required to activate external NADH oxidation in a high-cation medium, containing physiological concentrations of Pi, Mg2+ and K+. The results are interpreted as evidence for a role of spermine and spermidine in the modulation of exogenous NADH oxidation by plant mitochondria in vivo.  相似文献   

15.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

16.
Putrescine, spermidine and spermine levels were measured during development, metamorphosis and adult life of the frog, Microhyla ornata . Development of Microhyla was accompanied by high fluctuating levels of putrescine and spermidine with low and steady levels of spermine. Putrescine was the major polyamine during development from egg to mature tadpole. During metamorphosis both putrescine and spermidine decreased significantly; but the decrease in putrescine content was more rapid than that of spermidine. Thus, in the freshly metamorphosed frog, the concentration of spermidine exceeded that of putrescine. In most of the adult tissues also spermidine concentration was higher than putrescine and spermine. While the free form of putrescine and spermidine increased during early development of the fertilized egg to tadpole, the levels of protein conjugated polyamines decreased. In the free form, putrescine was the major polyamine while in the protein conjugated form spermidine concentration was higher than putrescine and spermine. Thus polyamine pattern is different in early development, during metamorphosis and in differentiated adult tissues of this frog. ∞-Difluoromethylornithine treatment at early blastula stage did not interfere with the normal development of Microhyla embryos.  相似文献   

17.
Summary The putrescine uptake/efflux regulation and their regulatory role on intracellular polyamine pools have been studied in the parasitic protozoa Leishmania infantum. Putrescine uptake was age-dependent with maximal values in logarithmic phase promastigotes and minimal in stationary phase. Moreover, putrescine uptake was activated in response to depletion of intracellular polyamines by alpha-difluoromethylornithine (DFMO) — a well known irreversible enzyme-activated inhibitor of ornithine decarboxylase. Kinetic studies of putrescine uptake induction showed a notable rise in Vmax without Km changes, suggesting a de novo synthesis of putrescine carriers. Putrescine uptake was able to replenish polyamine content and also to recover the proliferative rate in cells treated during 24 hours with DFMO.  相似文献   

18.
The present experiments are the first survey of the association of endogenous and exogenous putrescine, spermidine, and spermine with subcellular structures of rat brain cortex. The differences of distribution in subfractions obtained from salt-free and salt-containing density gradients were studied, with the following results: (1) In contrast with liver preparation, putrescine and the polyamines spermidine and spermine are not distributed in parallel with RNA. (2) In salt-containing media, putrescine and the polyamines were preferentially associated with synaptosomes and with synaptosomal membranes. Significant association with myelin constituents was observed only in salt-free media. (3) Exogenous putrescine and the polyamines were less firmly attached to synaptosomes and to synaptosomal membrane fractions than the endogenous amines. There is good evidence for similar subcellular localizations of putrescine and GABA. Putrescine seems to be entrapped in the nerve endings. (4) Uptake studies with crude mitochondria under conditions of high-affinity uptake showed no temperature-sensitive component of polyamine accumulation in synaptosomes, in contrast with GABA, monoacetylputrescine, and ornithine. (5) Polyamines bound to myelin constituents or mitochondria could be displaced by a 200-fold concentration of nonradioactive amines; this was not the case with polyamines bound to synaptosomes. Mg2+ did not effectively compete with spermine for binding sites at synaptic regions. (6) Electrical stimulation and stimulation by mono- and bivalent cations did not change the concentrations of the polyamines and GABA in guinea pig cortex. (7) There is no evidence for a neurotransmitter role of putrescine, spermidine, or spermine, although these compounds might function as modulators of neurotransmission.  相似文献   

19.
Polyamines were identified by high performance liquid chromatography (benzoylation) and by thin layer chromatography (dansylation) in xylem exudates from stems of sunflowers (Helianthus annuus [L.]), mung bean (Vigna radiata [L.] Wilczek), grapevine (Vitis vinifera [L.] cv Grenache), and orange (Citrus sinensis [L.] Osbeck, cv Valencia), as well as in phloem sap (using elution into EDTA) of sunflower and mung bean plants. Putrescine was the major polyamine detected, ranging in concentrations of 150 to 9200 picomoles per milliliter exudate, whereas only trace amounts of spermine were detected. High amounts of putrescine and spermidine were found in EDTA eluates (possibly phloem sap) as compared with elution into water. Concentrations of putrescine and spermidine in xylem exudates were related to the physiological conditions of the plants prior to exudate collection. More putrescine was found in exudates of older than in younger sunflower plants, and salt stress applied to sunflower plants resulted in a higher concentration of putrescine and spermidine in the exudate. The presence and abundance of putrescine and spermidine in xylem and phloem exudates indicate that polyamines may be translocated in plants. This long-distance translocation further supports the hypothesis that polyamines have a regulatory role in plant growth and response to stress.  相似文献   

20.
Abstract

Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号