首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Programmed neuronal cell death is required during development to achieve the accurate wiring of the nervous system. However, genetic or accidental factors can lead to the premature, non-programmed death of neurons during adult life. Inappropriate death of cells in the nervous system is the cause of multiple neurodegenerative disorders. Pathological neuronal death can occur by apoptosis, by necrosis or by a combination of both. Necrotic cell death underlies the pathology of devastating neurological diseases such as neurodegenerative disorders, stroke or trauma. However, little is known about the molecular mechanisms that bring about necrotic cell death. Proteases play crucial roles in neuron degeneration by exerting both regulatory and catabolic functions. Elevated intracellular calcium is the most ubiquitous feature of neuronal death with the concomitant activation of cysteine calcium-dependent proteases, calpains. Calpains and lysosomal, catabolic aspartyl proteases, play key roles in the necrotic death of neurons. In this review, we survey the recent literature on the role of cysteine and aspartyl proteases in necrosis and neurodegeneration, aiming to delineate common proteolytic mechanisms mediating cellular destruction.  相似文献   

3.
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.Artemisinin, a sesquiterpene lactone isolated from the Chinese herb Artemisia annua L., has profound activity against malaria.1 Artemisinin contains an endoperoxide moiety that reacts with iron to produce toxic reactive oxygen species (ROS). When malaria parasite (Plasmodia) consumes iron-rich haemoglobin within its acidic food vacuole in erythrocytes, the exposure of artemisinin to haem-derived iron results in lethal ROS production that exerts fatal toxicity to the parasite.2 Therefore, artemisinin, its water-soluble derivative artesunate (ART) and other analogues are potent in killing malarial parasites.1,3Cancer cells contain substantial free iron, resulting from their higher-rate iron uptake via transferrin receptors compared with normal cells. Therefore, artemisinin-based drugs such as ART possess selective toxicity to cancer cells.4, 5, 6 Importantly, the pharmacokinetics and tolerance of ART as an anti-malarial drug have been well documented, with clinical studies showing excellent safety. Collectively, these properties make artemisinin-based compounds attractive drug candidates for cancer chemotherapy. Artemisinin and ART have been shown to induce cell death in multiple cancer cells, including colon, breast, ovarian, prostate,7 pancreatic8 and leukaemia9 cancer cells. Preliminary in vivo experiments also indicate the therapeutic potential for these drugs as anti-cancer treatments. In animal models, artemisinin or ART has shown promising results in Kaposi Sarcoma,10 pancreatic cancer11 and hepatoma,12 while compassionate use of ART in uveal melanoma patients fortifies standard chemotherapy potential for the patients.13 Currently, ART is on clinical trial for breast cancer treatment (ClinicalTrials.gov ID: NCT00764036).Programmed cell death (PCD) is one of the critical terminal paths for the cells of metazoans. Among PCD, apoptosis has been well studied and it is known that caspase activation is essential in this process.14 In addition to apoptosis, necroptosis is another form of PCD. The RIP1-RIP3 complex highlights the signals that regulate necroptosis.15, 16, 17 Artemisinin derivatives, mostly ART, have been suggested to lead to apoptosis via ROS production in cancer cells. Efforts have been focused on ROS-mediated mitochondrial apoptosis,9,18,19 and DNA damage20 in cancer cells. Recent data suggest that artemisinin and its derivatives may induce cell death or inhibit proliferation through diverse mechanisms in different cell types. Artemisinin or its analogues were shown to inhibit cell proliferation in multiple cancer cells by regulating cell-cycle arrest21, 22, 23 or inducing apoptosis.24,25 Nevertheless, the detailed molecular mechanisms underlying artemisinin or ART-induced cell death are poorly understood, thus need to be further addressed.Neurofibromatosis 2 (NF2) is caused by the loss of NF2 gene encoding Merlin protein. NF2 gene mutations cause the low grade tumour syndrome, composed of schwannomas, meningiomas and ependymomas.26 All spontaneous schwannomas, the majority of meningiomas and a third of ependymomas are caused by NF2 gene mutations. Notably, approximately 10% of intracranial tumours are schwannomas.27 Interestingly, NF2 gene mutations are also found in a variety of cancers, including breast cancer and mesothelioma.28, 29, 30 The low grade tumours caused by NF2 gene mutations do not respond well to current cancer drugs and therapy is restricted to surgery and radiosurgery.26 Therefore, there is a need for drug treatment of the diseases. Here, we show that ART sufficiently induced schwannoma cell death in both RT4 cell line and human primary cells. Importantly, we show, for the first time, that ART-induced cell death is largely dependent on necroptosis. Our data suggest that ART has great potential in schwannoma chemotherapy, especially when used in synergy with an apoptosis-inducing drug and/or an autophagy-inhibitory drug.  相似文献   

4.
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain, were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting cell viability.  相似文献   

5.
Cell death is an intrinsic part of metazoan development and mammalian immune regulation. Whereas the molecular events orchestrating apoptosis have been characterized extensively, little is known about the biochemistry of necrotic cell death. Here, we show that, in contrast to apoptosis, the induction of necrosis does not lead to the shut down of protein synthesis. The rapid drop in protein synthesis observed in apoptosis correlates with caspase-dependent breakdown of eukaryotic translation initiation factor (eIF) 4G, activation of the double-stranded RNA-activated protein kinase PKR, and phosphorylation of its substrate eIF2-alpha. In necrosis induced by tumor necrosis factor, double-stranded RNA, or viral infection, de novo protein synthesis persists and 28S ribosomal RNA fragmentation, eIF2-alpha phosphorylation, and proteolytic activation of PKR are absent. Collectively, these results show that, in contrast to apoptotic cells, necrotic dying cells retain the opportunity to synthesize proteins.  相似文献   

6.
7.
《Autophagy》2013,9(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

8.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

9.
Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles’ heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.  相似文献   

10.
Morgan MJ  Kim YS  Liu ZG 《Cell research》2008,18(3):343-349
Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFα indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells.  相似文献   

11.
12.
Comment on: Rockenfeller P, et al. Cell Cycle 2010; 9:2836-42.  相似文献   

13.
14.
Macroautophagy or autophagy is a self-digesting mechanism that the cellular contents are engulfed by autophagosomes and delivered to lysosomes for degradation. Although it has been well established that autophagy is an important protective mechanism for cells under stress such as starvation via provision of nutrients and removal of protein aggregates and damaged mitochondria, there is a very complex relation between autophagy and cell death. At present, the molecular cross-talk between autophagy and apoptosis has been well discussed, while the relationship between autophagy and programmed necrotic cell death is less understood. In this review we focus on the role of autophagy in necrotic cell death by detailed discussion on two important forms of necrotic cell death: (i) necroptosis and (ii) poly-(ADP-ribose) polymerase (PARP)-mediated cell death. It is believed that one important aspect of the pro-survival function of autophagy is achieved via its ability to block various forms of necrotic cell death.  相似文献   

15.
Caspase-independent programmed cell death with necrotic morphology.   总被引:14,自引:0,他引:14  
Cell death is generally classified into two large categories: apoptosis represents active, programmed cell death, while necrosis represents passive cell death without underlying regulatory mechanisms. Recent progress revealed that caspases, a family of cysteine proteases, play a central role in the regulation of apoptosis. Unexpectedly, however, caspase inhibition occasionally turns the morphology of programmed cell death from apoptotic into necrotic without inhibiting death itself. In this article, we review different models of caspase-independent programmed cell death showing necrotic-like morphology, including our Ras-mediated caspase-independent cell death. Based on these findings, we suggest the existence of a necrotic-like cell death regulated by cellular intrinsic death programs distinct from that of apoptosis. Even though type 2 physiological cell death, or autophagic degeneration, has been recognized as a necrotic-like programmed cell death for a long time, the underlying molecular mechanisms have not been identified despite its physiological significance. This has been in part due to the previous absence of adequate caspase-independent cellular models to study, recent efforts may now help to elucidate these mechanisms.  相似文献   

16.
Molecular mechanisms and pathophysiology of necrotic cell death   总被引:2,自引:0,他引:2  
Necrotic cell death has long been considered an accidental and uncontrolled mode of cell death. But recently it has become clear that necrosis is a molecularly regulated event that is associated with pathologies such as ischemia-reperfusion (IR) injury, neurodegeneration and pathogen infection. The serine/threonine kinase receptor-interacting protein 1 (RIP1) plays a crucial role during the initiation of necrosis induced by ligand-receptor interactions. On the other hand, ATP depletion is an initiating factor in ischemia-induced necrotic cell death. Common players in necrotic cell death irrespective of the stimulus are calcium and reactive oxygen species (ROS). During necrosis, elevated cytosolic calcium levels typically lead to mitochondrial calcium overload, bioenergetics effects, and activation of proteases and phospholipases. ROS initiates damage to lipids, proteins and DNA and consequently results in mitochondrial dysfunction, ion balance deregulation and loss of membrane integrity. Membrane destabilization during necrosis is also mediated by other factors, such as acid-sphingomyelinase (ASM), phospholipase A(2) (PLA(2)) and calpains. Furthermore, necrotic cells release immunomodulatory factors that lead to recognition and engulfment by phagocytes and the subsequent immunological response. The knowledge of the molecular mechanisms involved in necrosis has contributed to our under-standing of necrosis-associated pathologies. In this review we will focus on the intracellular and intercellular signaling events in necrosis induced by different stimuli, such as oxidative stress, cytokines and pathogen-associated molecular patterns (PAMPs), which can be linked to several pathologies such as stroke, cardiac failure, neurodegenerative diseases, and infections.  相似文献   

17.
18.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans.  相似文献   

19.
NADPH oxidases: new players in TNF-induced necrotic cell death   总被引:2,自引:0,他引:2  
Necrosis is a caspase-independent cell death process involving the generation of reactive oxygen species (ROS). In a recent issue of Molecular Cell, Kim et al. (2007) reported on a novel TNF receptor 1 necrotic signaling complex inducing TRADD- and RIP1-dependent recruitment and activation of the ROS-generating Nox1 NADPH oxidase complex.  相似文献   

20.
Programmed cell death in animals is usually associated with apoptotic morphology and requires caspase activation. Necrosis and caspase-independent cell death have been reported, but mostly in experimental conditions that lead some to question their existence it in vivo. Loss of interdigital cells in the mouse embryo, a paradigm of cell death during development [1], is known to include an apoptotic [2] and caspase-dependent [3] [4] mechanism. Here, we report that, when caspase activity was inhibited using drugs or when apoptosis was prevented genetically (using Hammertoe mutant mice, or mice homozygous for a mutation in the gene encoding APAF-1, a caspase-activating adaptor protein), interdigital cell death still occurred. This cell death was negative for the terminal-deoxynucleotidyl-mediated dUTP nick end-labelling (TUNEL) assay and there was no overall cell condensation. At the electron microscopy level, peculiar 'mottled' chromatin alterations and marked mitochondrial and membrane lesions, suggestive of classical necrotic cell death, were observed with no detectable phagocytosis and no local inflammatory response. Thus, in this developmental context, although caspase activity confers cell death with an apoptotic morphotype, in the absence of caspase activity an underlying mechanism independent of known caspases can also confer cell death, but with a necrotic morphotype. This cell death can go undetected when using apoptosis-specific methodology, and cannot be blocked by agents that act on caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号