首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of mammalian genomes have one gene copy encoding the protein that we named hampin. A search in a number of databases revealed a distant homologue, the well-known Drosophila protein MSL-1 (male-specific lethal 1). An alternative splicing of mRNA led to a significant diversity of structural hampin variants with different domain compositions. We analyzed the tissue-specific expression of five mouse hampin variants using RT-PCR. Two variants encoding hampin proteins with truncated N termini were shown to have a restricted tissue specificity: they are exclusively expressed in the testes. The mRNAs of other hampin variants were detected in all the tested tissues at comparable levels. We obtained polyclonal antibodies to the recombinant hampin and used them to demonstrate that at least one of the variants is predominantly localized in the nucleus. The specific features of the hampin primary structure and its possible functions as a member of the hampin/MSL-1 family of proteins are discussed.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 363–371.Original Russian Text Copyright © 2005 by Dmitriev, Pestov, Korneenko, Gerasimova, Zhao, Modyanov, Kostina, Shakhparonov.The article was translated by the authors.  相似文献   

2.
Dosage compensation in Drosophila is mediated by a complex, called compensasome, composed of at least five proteins and two noncoding RNAs. Genes encoding compensasome proteins have been collectively named male-specific lethals or msls. Recent work showed that three of the Drosophila msls (msl-3, mof, and mle) have an ancient origin. In this study, I describe likely orthologues of the two remaining msls, msl-1 and msl-2, in several invertebrates and vertebrates. The MSL-2 protein is the only one found in Drosophila and vertebrate genomes that contains both a RING finger and a peculiar type of CXC domain, related to the one present in Enhancer of Zeste proteins. MSL-1 also contains two evolutionarily conserved domains: a leucine zipper and a second characteristic region, described here for the first time, which I have called the PEHE domain. These two domains are present in the likely orthologues of MSL-1 as well as in other genes in several invertebrate and vertebrate species. Although it cannot be excluded that the compensasome complex is a recent evolutionary novelty, these results shows that all msls are found in mammals, suggesting that protein complexes related to the compensasome may be present in mammalian species. Metazoans that lack several of the msls, such as Caenorhabditis elegans, cannot contain compensasomes. The evolutionary relationships of the compensasome and the NuA4 complex, another chromatin-remodeling complex that contains related subunits, are discussed.  相似文献   

3.
4.
Alternative splicing has been recognized as a major mechanism by which protein diversity is increased without significantly increasing genome size in animals and has crucial medical implications, as many alternative splice variants are known to cause diseases. Despite the importance of knowing what structural changes alternative splicing introduces to the encoded proteins for the consideration of its significance, the problem has not been adequately explored. Therefore, we systematically examined the structures of the proteins encoded by the alternative splice variants in the HUGE protein database derived from long (>4 kb) human brain cDNAs. Limiting our analyses to reliable alternative splice junctions, we found alternative splice junctions to have a slight tendency to avoid the interior of SCOP domains and a strong statistically significant tendency to coincide with SCOP domain boundaries. These findings reflect the occurrence of some alternative splicing events that utilize protein structural units as a cassette. However, 50 cases were identified in which SCOP domains are disrupted in the middle by alternative splicing. In six of the cases, insertions are introduced at the molecular surface, presumably affecting protein functions, while in 11 of the cases alternatively spliced variants were found to encode pairs of stable and unstable proteins. The mRNAs encoding such unstable proteins are much less abundant than those encoding stable proteins and tend not to have corresponding mRNAs in non-primate species. We propose that most unstable proteins encoded by alternative splice variants lack normal functions and are an evolutionary dead-end.  相似文献   

5.
6.
7.
The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.  相似文献   

8.
MSL-2 is required for the male-specific assembly of a dosage compensation regulatory complex on the X chromosome of Drosophila melanogaster. We found that MSL-2 binds in a reproducible, partial pattern to the male X chromosome in the absence of MLE or MSL-3, or when ectopically expressed at a low level in females. Moreover, the pattern of MSL-2 binding corresponds precisely in each case to that of MSL-1, suggesting that the two proteins function together to associate with the X. Consistent with this hypothesis, we isolated EMS-induced loss of function msl-1 and msl-2 alleles in a screen for suppressors of the toxic effects of MSL-2 expression in females. We also used site-directed mutagenesis to determine the importance of the MSL-2 RING finger domain and second cysteine-rich motif. The mutations, including those in conserved zinc coordinating cysteines, confirm that the RING finger is essential for MSL-2 function, while suggesting a less stringent requirement for an intact second motif.  相似文献   

9.
Eukaryotic ribosomes have a large number of proteins but the exact nature of their contribution to the structure and to the function of the particle is not known. Of the 78 proteins in yeast ribosomes, six have zinc finger motifs of the C2-C2 variety. Both genes encoding the essential yeast ribosomal protein YL37a, which has such a zinc finger motif, were disrupteXXPd. The double deletion, which is lethal, can be rescued with a plasmid-encoded copy of a YL37a gene. Mutations were constructed in a plasmid-encoded copy of YL37a; the mutations caused the cysteine residues in the motif (at positions 39, 42, 57 and 60) to be replaced, one at a time, with serine. The cysteine residue at position 39, the first of the four in the motif, is essential for the function of YL37a, since a C39S mutation did not complement the null phenotype. However, plasmids encoding variants with C42S, C57S, or C60S mutations in the zinc finger motif were able to rescue the null mutant. YL37a binds zinc, but none of the mutant proteins, C39S, C42S, C57S, or C60S, was able to bind the metal. Thus, all four cysteine residues are essential for the binding of zinc; only one, C39, is essential for the function of the ribosomal protein.  相似文献   

10.
N P Dubinin 《Genetika》1988,24(2):197-203
Rare variants of blood proteins occur, due to mutations (mutant alleles) in monomorphic loci encoding various proteins. A number of authors studied the distribution of these variants in human populations using the method of electrophoresis. The population of USA, South America, Japan, Europe was analysed. 1334 rare variants (1.0.10(-3)) were discovered out of 1,329,558 alleles (test locus in 664,779 individuals). 7 mutant alleles (3.6.10(-6)) were found among 1,957,305 alleles. The low frequency of occurrence of mutations in the loci encoding rare blood protein variants, when testing the speed of mutagenicity and its alteration, necessitates electrophoresis of blood proteins to be done in large scales. A method was proposed, based on accounting rare variants in children with congenital disorders, which are supposed to have a heavy load of mutations. The data collected demonstrated that the majority of rare variants in a given generation were obtained from parents. Accumulation of rare protein variants at low concentrations, as neutral alleles, in conditions of low mutation frequency in monomorphic loci takes place in the population. Comparison of frequencies of rare variants among healthy newborns and the children with congenital disorders revealed their identity (1.0.10(-3)), as compared to 1.05.10(-3)). Simplification of the method for scoring mutations judging by rare blood protein variants, which is necessary for monitoring for gene mutations in human populations, stimulates development of novel approaches.  相似文献   

11.
M E John  C M Long 《Gene》1990,86(2):171-176
The nucleotide sequence of the cDNA clone encoding arcelin 2 (Arc2), one member of a family of closely related lectin-like plant toxins from wild bean accession, is presented. The sequence contains a 265-amino acid (aa) open reading frame and is 99.3% homologous to Arc1, another of the four electrophoretic variants with proven antibiosis characters. These two proteins differ by four aa residues. Based on cross hybridizations of RNAs, it is assumed that Arc4 is more divergent than Arc1 and Arc2. Furthermore, it is likely that at least three of the variants are polypeptides of similar size and the observed molecular weight differences between them are due to differences in the number of glycosylation sites.  相似文献   

12.
13.
The production of antibodies against poorly immunogenic proteins is problematic. Often there is a failure to generate such antibodies. Furthermore, antibodies against other specificities are frequently induced. We describe a simple approach, analogous to conjugation to a protein carrier, whereby immunization with naked DNA was used to raise antibody to a highly homologous and poorly immunogenic allotypic protein. Deoxyribonucleic acid encoding the protein of interest was fused to DNA encoding the Fc region of a foreign Ig, resulting in increased immunogenicity. The potential applications of this approach include the production of antisera and mAb to allotypic variants, mutant proteins, and proteins that are highly conserved between species.  相似文献   

14.
15.
16.
The rational design of loops and turns is a key step towards creating proteins with new functions. We used a computational design procedure to create new backbone conformations in the second turn of protein L. The Protein Data Bank was searched for alternative turn conformations, and sequences optimal for these turns in the context of protein L were identified using a Monte Carlo search procedure and an energy function that favors close packing. Two variants containing 12 and 14 mutations were found to be as stable as wild-type protein L. The crystal structure of one of the variants has been solved at a resolution of 1.9 A, and the backbone conformation in the second turn is remarkably close to that of the in silico model (1.1 A RMSD) while it differs significantly from that of wild-type protein L (the turn residues are displaced by an average of 7.2 A). The folding rates of the redesigned proteins are greater than that of the wild-type protein and in contrast to wild-type protein L the second beta-turn appears to be formed at the rate limiting step in folding.  相似文献   

17.
Homer proteins are commonly known as scaffold proteins at postsynaptic density. Homer 1 is a widely studied member of the Homer protein family, comprising both synaptic structure and mediating postsynaptic signaling transduction. Both an immediate-early gene encoding a Homer 1 variant and a constitutively expressed Homer 1 variant regulate receptor clustering and trafficking, intracellular calcium homeostasis, and intracellular molecule complex formation. Substantial preclinical investigations have implicated that each of these Homer 1 variants are associated with the etiology of many neurological diseases, such as pain, mental retardation syndromes, Alzheimer's disease, schizophrenia, drug-induced addiction, and traumatic brain injury.  相似文献   

18.
19.
20.
Episialin is a mucin-type glycoprotein present at the luminal side of most glandular epithelial cells. We have isolated cDNA clones encoding episialin and determined the structure of the gene. The gene encodes a transmembrane protein which consists of, for the greater part, tandem repeats of 20 amino acids. The number of these repeats varies between 40 and 90 among different alleles. The repeats and most of the remainder of the protein are very rich in potential O-linked glycosylation sites. Two different splice variants were found. Interestingly, the proteins encoded by these two variants differ in their signal sequences and in the extreme amino-terminal parts of the mature proteins, suggesting alternative processing of these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号