首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

2.
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay.The developed assays were applied for the quantification of bacteria in soil samples.  相似文献   

3.
We have developed an oligonucleotide-chip based assay for detection of 16S ribosomal PCR products from tick-borne bacteria. This chip contains 14 specific probes, which target variable regions of 16S rDNA of tick-borne bacteria including Borrellia spp., Rickettsia spp., Anaplasma spp., Coxiella burnetii and Francisella tularensis. The specificity of these probes was tested by hybridization of the chip with fluorescently labeled PCR products amplified from the genomic DNA of selected tick-borne bacteria. The assay was also tested for detection of tick-borne bacteria in single ticks.  相似文献   

4.
基因芯片技术检测3种肠道病原微生物方法的建立   总被引:2,自引:0,他引:2  
目的:建立一种运用多重PCR和基因芯片技术检测和鉴定伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的方法。方法:分别选取伤寒沙门氏菌染色体ViaB区域中编码调控Vi抗原表达的基因(vipR)、痢疾杆菌编码侵袭质粒抗原H基因(ipaH)和单核细胞增生利斯特菌溶血素基因(hlyA)设计引物和探针,探针3'端进行氨基修饰,下游引物标记荧光素Cy3。在优化的PCR和杂交反应条件下,进行三重PCR扩增,产物与包括3种致病菌特异性探针的基因芯片杂交。在评价基因芯片的特异性和灵敏度之后,对临床样本进行检测。结果:只有3种目的致病菌的PCR产物在相应探针位置出现特异性信号,其他阴性细菌均无信号出现;3种致病菌的检测灵敏度均可达到103CFU/mL;检测30例临床样本的结果与常规细菌学培养结果一致。结论:所建立的可同时检测伤寒沙门氏菌、痢疾杆菌和单核细胞增生利斯特菌的基因芯片方法快速、准确,特异性高,重复性好,为3种肠道致病菌的快速检测和鉴定提供了新方法和新思路。  相似文献   

5.
[目的]建立布鲁氏菌的16S rDNA序列分析方法,评价该方法鉴定布鲁氏菌的特异性和实用性.[方法]用PCR扩增布鲁氏菌的16S rDNA片段,将扩增的产物纯化后测序,从GenBank下载与布鲁氏菌易发生血清学交叉反应的细菌的16S rDNA序列.使用DNAMAN软件进16S rDNA序列相似性分析.[结果]在布鲁氏菌中16S rDNA核苷酸序列相似性达到了99.74%,而与其他有血清型交叉反应的菌株相比较,16S rDNA序列间有显著差异.[结论]16S rDNA序列分析是一种快速、简便、特异的鉴定布鲁氏菌的方法之一.  相似文献   

6.
Flavobacterium psychrophilum is the etiological agent of bacterial coldwater disease, which causes significant problems to aquaculture worldwide. A recent study (Soule M, Cain K, LaFrentz S, Call DR [2005] Infect Immun 73:3799-3802) identified two 16S rRNA gene sequence variants (6 base differences) within the variable stem-loop region 3 for F. psychrophilum strains ATCC 49418 and CSF 259-93. That study also hypothesized that F. psychrophilum is composed of at least 2 distinct genetic lineages (I and II) described by a microarray-based comparative genomics study. In the present study, we augmented an existing 16S rDNA microarray to detect both 16S rRNA sequence variants from F. psychrophilum. Subsequent microarray experiments showed that CSF 259-93 hybridized as expected, but ATCC 49418 was positive for both sequence variants. We then developed a PCR-restriction fragment length polymorphism (RFLP) assay (MnlI and MaeIII) to distinguish between the 2 sequences. Gel isolation of PCR-RFLP products, cloning, and sequencing confirmed that ATCC 49418 harbors both 16S rRNA sequences. Microarray experiments showed that 11 of 14 strains from genetic Lineage I harbor both the CSF 259-93 and ATCC 49418 16S rRNA sequence variants, whereas all 15 Lineage II strains were only positive for the CSF 259-93 sequence (p < 0.0001). Elastin hydrolysis and tetracycline resistance were most closely associated with the latter strains (p < 0.0001 and p = 0.024, respectively). These data support the hypothesis that F. psychrophilum is composed of at least 2 distinct genetic lineages that are closely associated with host origin.  相似文献   

7.
通用引物PCR检测临床常见致病菌的实验研究   总被引:2,自引:0,他引:2  
通用引物可一次性扩增18种临床常见致病菌和耐药菌株的DNA,扩增片段长度在220bp左右,18种特异性探针分别与18种标准菌株的PCR扩增产物杂交结果显示探针都具有高度特异性;5种37例经法国梅里埃API细菌鉴定系统确定的临床分离菌株进行杂交鉴定,鉴定结果与分离株一致,表明设计的探针具有高度特异性及准确性。80例临床标本分别用法国梅里埃API细菌鉴定系统及PCR杂交法进行检测,阳性率分别为(52.5%)和(67.5%),表明PCR结合寡核苷酸杂交法比传统的生物学培养法更为灵敏,值得推广。  相似文献   

8.
目的探讨地高辛标记寡核苷酸基因探针应用于微生态研究的可行性和实用性。方法制备双歧杆菌属和部分种的地高辛标记16S rRNA寡核苷酸探针,初步应用于微生态制剂鉴定和临床肠道微生态检测,评价寡核苷酸探针杂交在肠道微生态研究和检测中的应用价值。结果地高辛标记寡核苷酸探针具有较好的特异性与灵敏度:地高辛标记的双歧杆菌属和种的共6种寡核苷酸基因探针与标准菌株杂交后灵敏度和特异度分别为属探针95%、75%,青春双歧87.5%、90%,两歧双歧87.5%、87.5%,短双歧87.5%、92.5%,婴儿双歧75%、95%,长双歧75%、100%。结论寡核苷酸基因探针用于肠道细菌的鉴定显示出一定前景,加大探针的种类与扩大调查范围有可能使该技术替代现有细菌培养技术。  相似文献   

9.
The rapid and accurate detection and identification of food-borne pathogenic bacteria is critical for food safety. In this paper, we describe a rapid (<4 h) high-throughput detection and identification system that uses universal polymerase chain reaction (PCR) primers to amplify a variable region of bacterial the 16S rRNA gene, followed by reverse hybridization of the products to species-specific oligonucleotide probes on a chip. This procedure was successful in discriminating 204 strains of bacteria from pure culture belonging to 13 genera of bacteria. When this method was applied directly to 115 strains of bacteria isolated from foods, 112/115 (97.4%) were correctly identified; two strains were indistinguishable due to weak signal, while one failed to produce a PCR product. The array was used to detect and successfully identify two strains of bacteria from food poisoning outbreak samples, giving results through hybridization that were identical to those obtained by traditional methods. The sensitivity of the microarray assay was 102 CFU of bacteria. Thus, the oligonucleotide microarray is a powerful tool for the detection and identification of pathogens from foods. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with "universal" primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

11.
Recent investigations have shown that members of the Bacillus cereus group carry genes which have the potential to cause gastrointestinal and somatic diseases. Although most cases of diseases caused by the B. cereus group bacteria are relatively mild, it is desirable to be able to detect members of the B. cereus group in food and in the environment. Using 16S rDNA as target, a PCR assay for the detection of B. cereus group cells has been developed. Primers specific for the 16S rDNA of the B. cereus group bacteria were selected and used in combination with consensus primers for 16S rDNA as internal PCR procedure control. The PCR procedure was optimized with respect to annealing temperature. When DNA from the B. cereus group bacteria was present, the PCR assay yielded a B. cereus specific fragment, while when non-B. cereus prokaryotic DNA was present, the consensus 16S rDNA primers directed synthesis of the PCR products. The PCR analyses with DNA from a number of non-B. cereus confirmed the specificity of the PCR assay.  相似文献   

12.
To detect oral motile bacteria directly from dental plaque, specific PCR primers for Centipeda periodontii and Selenomonas sputigena were designed based on the sequence analysis of their 16S rDNA. The primers were specific and sensitive enough to amplify DNA fragments from the available oral bacteria. The detection limit was fewer than 10 bacterial cells per sample. It was also possible to detect these bacteria in dental plaque. The prevalence of these bacteria varied in each sample. The specific primers designed in this study may clarify the epidemiology of periodontal disease.  相似文献   

13.
To employ partial 16S rDNA PCR and automated sequencing technique to identify non-culturable causal agents of bacterial meningitis, 73 peripheral blood samples and 413 culture-negative and eight culture-positive CSF clinical specimens from patients with suspected acute meningitis were examined for the presence of bacterial genomic DNA employing broad range 16S rDNA PCR followed by sequencing of the amplicons. In blood samples, 63/73 specimens were PCR positive (86.3%) and after direct sequencing of the PCR amplicons, only 12.7% (8/63) gave clear sequencing results and 55/63 (87.3%) were mixed with more than one organism detected. The mixed PCR amplicons were separated by using PAGE and mixed amplicons from 29/55 (52.7%) specimens were successfully identified through sequencing. Of the CSF samples, 8/8 culture-positive samples were also PCR positive and 45/413 (10.9%) of culture-negative gave a strong PCR signal and 88/413 (21.3%) specimens yielded a weak PCR signal. The remaining 280 culture-negative specimens were also PCR negative. Nested PCR was set up for the 88 weak positive samples and yielded 72/88 (81.8%) strong positives, with the remainder failing to amplify 133/413 (32.2%) culture-negative samples were PCR positive. In this study, the most common bacteria identified from blood specimens were Neisseria meningitidis, 13/63 (20.6%); Streptococcus spp, 5/63 (7.9%); Acinetobacter spp and Pseudomonas spp 4/63 (6.3%). From culture-negative CSF, the pattern was different in that Staphylococcus spp (13/58, 22.4%), Neisseria meningitidis (9/58, 15.52%) and Pseudomonas spp (8/58, 14.79%), were the most frequent. Overall, 16S rRNA broad-range PCR combined with direct DNA sequencing is a valuable molecular tool to aid with the detection as well as identification of non-culturable aetiological agents of acute bacterial meningitis and can augment cultural methods in the diagnosis of central nervous system infections in patients who have been treated with antibiotics. However, this study demonstrates that contamination is an important complication of the molecular assay, which should be attempted to be eliminated through careful laboratory controls. Hence there should be careful interpretation of any molecular finding, in tandem with other laboratory findings, such as culture, immunological and biochemical markers, and the clinical scenario of the patient.  相似文献   

14.
A recent PCR detection technique (TaqMan) based on a 3'-Minor Groove Binder (MGB) probe was applied to the detection of fecal-dominant bacteria to assess fecal contamination in environmental samples. Primers and probes used bacterial 16S ribosomal DNA (16S rDNA) as a gene marker and accurately defined with specificity a cluster of phylotypes within the Gram-positive low GC division. This cluster of phylotypes, called Fec1, corresponds to around 5% of human fecal microflora. Fec1 clustered 16S rDNA and strains (Eubacterium rectale) of fecal origin. A range of samples made up of feces and intestinal samples from humans and animals tested positive whereas other microbial ecosystems (soils, laboratory reactor, subsurface water) were negative. In order to circumvent problems related to DNA extraction efficiency, quantitative results took the form of the ratio between Fec1 16S rDNA and total bacterial 16S rDNA. The threshold of detection, defined as the ratio between Fec1 and total 16S rDNA, was measured as 0.006%.  相似文献   

15.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

16.
Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.  相似文献   

17.
A rapid method for the identification of lactic acid bacteria (LAB) from wine has been developed. This method is based on fluorescence in situ hybridisation (FISH), using fluorescent oligonucleotide probes, homologous to 16S rDNA of those species of LAB commonly found in wines. The protocol for the specific detection of these bacteria was established through the hybridisation of 36 reference strains. The specificity of the probes was evaluated by using pure cultures. Probes were used to identify species in different wines, making it evident that direct identification and quantification from natural samples without culturing is also possible. The results show that FISH is a promising technique for the rapid identification of LAB, allowing positive identification in a few hours (4-16 h).  相似文献   

18.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

19.
Pathogen detection is an important issue in human health due to the threats posed by severe communicable diseases. In the present study, to achieve efficient and accurate multiple detection of 11 selected pathogenic bacteria, we constructed a 16S rDNA oligonucleotide microarray containing doubly specific capture probes. Many target pathogens were specifically detected by the microarray with the aid of traditional perfect match‐based analysis using our previously proposed two‐dimensional visualization plot tool. However, some target species or subtypes were difficult to discriminate by perfect match analysis due to nonspecific binding of conserved 16S rDNA‐derived capture probes with high sequence similarity. We noticed that the patterns of specific spots for each strain were somewhat different in the two‐dimensional gradation plot. Therefore, to discriminate subtle differences between phylogenetically related pathogens, a pattern‐mapping statistical model was established using an artificial neural network algorithm trained by experimental repeats. The oligonucleotide microarray system harboring doubly specific capture probes combined with the pattern‐mapping analysis tool resulted in successful detection of all target pathogens including even subtypes of two closely related species showing strong nonspecific binding. Collectively, the results indicate that our novel combined system of a 16S rDNA‐based DNA microarray and a pattern‐mapping statistical analysis tool is a simple and effective method for detecting multiple pathogens. Biotechnol. Bioeng. 2010;106: 183–192. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
AIMS: To develop oligonucleotide probes for visualizing bacteria belonging to Enterobacteriaceae. METHODS AND RESULTS: 24-mer oligonucleotide probe (probe D) was designed by comparison of 16S rDNA sequences of 35 species of Enterobacteriaceae, eight species of Vibrionaceae and six species of Pasteurellaceae. The sequence of the probe corresponding to the complementary sequence of a position 1251-1274 of Escherichia coli 16S rRNA was found to be a highly conserved region of 16S rDNA sequence in Enterobacteriaceae different from that of Vibrionaceae and Pasteurellaceae. The fluorescent dye-labelled probe was tested for the specificity by in situ hybridization and epifluorescence microscopy. Seventy-six out of 78 strains belonging to Enterobacteriaceae were visualized in an optimal hybridization condition. No bacterial strains belonging to Vibrionaceae (31 strains) and Gram-positive bacteria (three strains) were visualized. CONCLUSIONS: In situ hybridization using probe D allows the detection of bacterial cells belonging to Enterobacteriaceae without false positive reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: In situ hybridization techniques using the probe D are potential tools for detecting Enterobacteriaceae in food and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号