首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrocellulose filter binding assay has been used to study effects of pH, temperature, ionic strength and magnesium ions on the specific binding of the cyclic adenosine 3',5'-monophosphate (cAMP) receptor protein (CAP) to the promoter of the lactose (lac) operon of Escherichia coli. The pH has a significant effect on binding with the greatest amount of specific binding appearing at pHs near 7 with a gradual decrease in binding as the pH is increased to 8. Specific binding was observed at temperatures of 22 degrees C and 37 degrees C but not at 4 degrees C. The specific binding was also found to be a function of the concentration of magnesium acetate and potassium chloride, being dependent on the specific cation present, the total ionic strength, and the concentration of the CAP protein. All binding decreases as the ionic strength, increases, but this decrease occurs at a lower ionic strength in magnesium acetate than in potassium chloride. In a double label experiment the filter assay demonstrates that the cAMP-CAP complex preferentially binds to the wild-type lac promoter in the presence of a lac promoter mutated at the CAP binding site. Based on these results and comparisons with other experiments reported in the literature, buffer conditions that approximate the physiological state of a cell appear to be best for studying the interaction between CAP and the lactose promoter in vitro.  相似文献   

2.
T Heyduk  J C Lee 《Biochemistry》1989,28(17):6914-6924
Cyclic AMP receptor protein (CRP) from Escherichia coli is assumed to exist in two states, namely, those represented by the free protein and that of the ligand-protein complex. To establish a quantitative structure-function relation between cAMP binding and the cAMP-induced conformational changes in the receptor, protein conformational change was quantitated as a function of cAMP concentration up to 10 mM. The protein conformation was monitored by four different methods at pH 7.8 and 23 degrees C, namely, rate of proteolytic digestion by subtilisin, rate of chemical modification of Cys-178, tryptophan fluorescence, and fluorescence of the extrinsic fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). Each of these techniques reveals a biphasic dependence of protein conformation on cAMP concentration. At low cAMP concentrations ranging from 0 to 200 microM, the rates of proteolytic digestion and that of Cys-178 modification increase, whereas the fluorescence intensity of the ANS-protein complex is quenched, and there is no change in the fluorescence intensity of the tryptophan residues in the protein. At higher cAMP concentrations, the rates of proteolytic and chemical modification of the protein decrease, while the fluorescence intensity of the ANS-protein complex is further quenched but there is an increase in the intensity of tryptophan fluorescence. These results show unequivocally that there are at least three conformational states of the protein. The association constants for the formation of CRP-cAMP and CRP-(cAMP)2 complexes derived from conformational studies are in good agreement with those determined by equilibrium dialysis, nonequilibrium dialysis, and ultrafiltration. Therefore, the simplest explanation would be that the protein exhibits three conformational states, free CRP and two cAMP-dependent states, which correspond to the CRP-cAMP and CRP-(cAMP)2 complexes. The binding properties of CRP-cAMP and CRP-(cAMP)2 to the lac promoter were studied by using the gel retardation technique. At a high concentration of cAMP which favors the formation of the CRP-(cAMP)2 complex, binding of the protein to DNA is decreased. This, together with conformational data, strongly suggests that only the CRP-cAMP complex is active in specific DNA binding whereas CRP and CRP-(cAMP)2 are not.  相似文献   

3.
The Vitreoscilla hemoglobin gene (vhb) is expressed under oxygen-limited conditions via an FNR-dependent mechanism. Furthermore, cAMP-CRP has been implicated in its regulation. Recently, VHb protein has been reported to protect a heterologous host from nitrosative stress. In this study we analyzed the regulation of the Vitreoscilla hemoglobin promoter (Pvhb) in Escherichia coli under nitrosative and oxidative stress conditions. Our results show unambiguously that expression of neither VHb nor chloramphenicol acetyltransferase under the control of Pvhb is induced under the experimental conditions used. Thus, a clear discrepancy between in vivo function, i.e. protection against nitrosative stress, and regulation of gene expression is obvious. The regulation of Pvhb reported here is in clear contrast to the expression pattern of flavohemoglobins from various microorganisms, which are generally induced by nitrosative stress. However, the length of Pvhb is only 146 bp and therefore, we cannot rule out that additional regulatory sequences may be located in the upstream region of Pvhb.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Summary The synthesis of the adenylate cyclase [ATP pyrophosphatelyase-(cyclizing), E.C. 4.6.1.1.] of Escherichia coli, appears to be regulated negatively by the cAMP receptor protein CRP. This conclusion is based on a comparison of adenylate cyclase activities measured in vitro with the rates of cAMP synthesis by intact bacteria. The activity of adenylate cyclase, depending on conditions of growth, is also regulated by CRP; this effect, however, is indirect insofar as it is mediated by a protein or proteins under CRP control.  相似文献   

12.
13.
14.
Dihydropicolinate synthase (DHDPS; E.C. 4.2.1.52) catalyses the first committed step of lysine biosynthesis in plants and bacteria. Plant DHDPS enzymes, which are responsible solely for lysine biosynthesis, are strongly inhibited by lysine (I0.5 =10 microM), whereas the bacterial enzymes which are less responsive or insensitive to lysine inhibition have the additional function of meso-diaminopimelate biosynthesis which is required for cell wall formation. Previous studies have suggested that expression of the Escherichia coli dapA gene, encoding DHDPS, is unregulated. We show here that this is not the case and that expression of LacZ from the dapA promoter (PdapA) increases in response to diaminopimelic acid limitation in E. coli K-12.  相似文献   

15.
H Aiba  T Nakamura  H Mitani    H Mori 《The EMBO journal》1985,4(12):3329-3332
Mutations which permit cAMP binding protein (CRP) to act in the absence of cAMP have been isolated by in vitro mutagenesis of a plasmid containing the cloned crp gene. Adenylate cyclase deficient cells harbouring the mutant (crp*) plasmids exhibited a variety of fermentation profiles on MacConkey indicator plates containing various sugars. beta-galactosidase synthesis in cells carrying the crp* plasmids was activated most by the addition of cGMP as well as cAMP. The sites of mutations which are responsible for the cAMP independent phenotype were determined by in vitro recombination and DNA sequencing. The amino acid substitutions in the mutant proteins were found in two specific regions of the crp gene encoding residues 53-62 and 141-148 of CRP polypeptide. The first region may participate in cAMP binding, while the second appears to be the inter-domain region of the N-terminal cAMP-binding and C-terminal DNA-binding domains.  相似文献   

16.
The refinement of tightly regulated prokaryotic expression systems that permit functional expression of toxic recombinant proteins is a continually evolving process. Unfortunately, the current best promoter options are either tightly repressed and produce little protein, or produce substantial protein but lack the necessary repression to avoid mutations stimulated by leaky expression in the absence of inducer. In this report, we present three novel prokaryotic expression constructs that are tightly regulated by L-rhamnose and D-glucose. These expression vectors utilize the Escherichia coli rhaT promoter and corresponding regulatory genes to provide titratable, high-level protein yield without compromising clone integrity. Together, these components may enable the stable cloning and functional expression of otherwise toxic proteins.  相似文献   

17.
18.
The cyclic AMP receptor protein (CRP) regulates the expression of many genes in Escherichia coli. The protein is a homodimer, and each monomer is folded into two distinct structural domains. In this study, we have used differential scanning calorimetry (DSC) and circular dichroism (CD) to measure the enthalpy change and melting temperature of the apo-CRP and CRP complexes with cAMP or DNA sequences lac, gal, and palindromic ICAP. DSC and CD measurements showed irreversible thermal denaturation process of CRP. Enthalpy of dissociation of the protein–DNA complex, as measured by DSC, depends on the DNA sequence. The thermal transition of the protein in CRP-DNA complexes, measured by CD, indicates that the protein stability in the complex is also DNA sequence-dependent.  相似文献   

19.
Fic E  Polit A  Wasylewski Z 《Biochemistry》2006,45(2):373-380
The cAMP receptor protein, allosterically activated by cAMP, regulates the expression of more than 100 genes in Escherichia coli. CRP is a homodimer of two-domain subunits. It has been suggested that binding of cAMP to CRP leads to a long-distance signal transduction from the N-terminal cAMP binding domain to the C-terminal domain of the protein responsible for interaction with specific sequences of DNA. In this study, the stopped-flow and time-resolved fluorescence lifetime measurements were used to observe the kinetics of the distance changes between the N-terminal and C-terminal domain of CRP induced by binding of cAMP to high-affinity binding sites. In these measurements, we used the constructed CRP heterodimer, which possesses a single Trp85 residue localized at the N-terminal domain of one CRP subunit, and fluorescently labeled by 1,5-I-AEDANS Cys178 localized at the C-terminal domain of the same subunit or at the opposite one. The F?rster resonance energy transfer method has been used to study the distance changes, induced by binding of cAMP, between Trp85 (fluorescence donor) and Cys178-AEDANS (fluorescence acceptor) in the CRP structure. The obtained results show that the allosteric transitions of CRP at micromolar cAMP concentrations follow the sequential binding model, in which binding of cAMP to high-affinity sites causes a 4 A movement of the C-terminal domain toward N-terminal domains of the protein, with kinetics faster than 2 ms, and CRP adopts the "closed" conformation. This fast process is followed by the slower reorientation of both CRP subunits.  相似文献   

20.
Interaction of the cAMP receptor protein with the lac promoter   总被引:27,自引:8,他引:19       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号