首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.  相似文献   

2.
ABSTRACT. Rapid relaxation (shortening) of the femoral chordotonal organ in Cuniculina impigra Redtenbacher induces a depolarization followed by hyperpolarization of the fast and slow extensor tibiae motor neurons (FETi and SETi). The initial depolarization is caused by acceleration-sensitive units of the chordotonal organ. The reverse sequence of responses is induced in flexor motor neurons. The common inhibitor neuron (CI) is depolarized by both lengthening (stretch) and relaxation of the chordotonal organ.
The initial depolarization of FETi and SETi and the initial hyperpolarization of flexor motor neurons produced by rapid relaxation of the chordotonal organ and the depolarization of CI produced by lengthening of the chordotonal organ all oppose the resistance reflex response. However, these assisting components are weak compared to the resisting ones.  相似文献   

3.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

4.
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single exponential function, whereas the decay following faster movements had to be characterized by a double exponential function. (2) Each of the two corresponding time constants was independent of stimulus velocity. (3) The relative contribution of each function to the total amount of depolarization changed with stimulus velocity. (4) The characteristics described in (1)–(3) were also found in the slow extensor tibiae motoneuron. (5) Single electrode voltage clamp studies on interneuron E4 indicated that no voltage dependent membrane properties were involved in the generation of the observed time course of decay. Thus, we can trace back a certain behavior (catalepsy) to the properties of an identified, nonspiking interneuron.Abbrevations FETi fast extensor tibiae motor neuron - FT-joint femur-tibia joint - FT-control loop femur-tibia control loop - SETi slow extensor tibiae motor neuron - R regression coefficient  相似文献   

5.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

6.
The femur-tibia control system which is responsible for catalepsy is studied in the open-loop configuration (input: stimulation of the femoral chordotonal organ; output: spike-frequency of FETi and SETi as well as the force produced by the extensor tibiae muscle). Comparison of motor neuron activities and muscle force reveals the input-output relationships of the extensor tibiae muscle. This muscle behaves like a low-pass filter with a small time constant for rising inputs and a large time constant for falling inputs. It forms the decisive low-pass filter for force production of the complete system. For freely moving tibia, the elastic properties of the muscles combined with the inert mass of the tibia contribute to the low-pass filter properties. The muscle does not contribute to the high-pass filter properties of the complete system. During repetitive stimulation FETi habituates quickly.Supported by DFG Ba 578  相似文献   

7.
The fast extensor tibiae (FETi) motor neuron is responsible for exciting the extensor tibiae muscle to produce most of the force for jumping in acridids. Because of its relatively large size and crucial role in jumping, FETi has been studied in an ever-increasing number of orthopteran species. Here we describe the structure of the metathoracic FETi neuron in six species of acridids and in two species of gryllids. The morphology of FETi within the respective groups is essentially equivalent, but marked differences are apparent between acridid and gryllid FETis. There are similarities in the size and location of the cell body and the course of the neurite through the ganglion. Differences are found in the number of large branches, density of branching, and the volume of neuropil receiving branches. We propose that the gryllid FETi is an intermediate form between slow extensor tibiae motor neurons involved in walking and acridid fast extensor tibiae motor neurons specialized for jumping.  相似文献   

8.
Campaniform sensilla monitor the forces generated by the leg muscles during the co-contraction phase of locust (Schistocerca gregaria) kicking and jumping and re-excite the fast extensor (FETi) and flexor tibiae motor neurones, which innervate the leg muscles. Sensory signals from a campaniform sensillum on the proximal tibia were compared in newly moulted locusts, which do not kick and jump, and mature locusts which readily kick and jump. The activity pattern of FETi during co-contraction was mimicked by stimulating the extensor tibiae muscle. Less force was generated and the spike frequency of the sensory neurone from the sensillum was significantly lower in newly moulted compared to mature locusts. Depolarisation of both FETi and flexor motor neurones as a result of sensory feedback was consequently less in newly moulted than in mature locusts. The difference in the depolarisation was greater than the decrease in the afferent spike frequency suggesting that the central connections of the afferents are modulated. The depolarisation could generate spikes in FETi and maintain flexor spikes in mature but not in newly moulted locusts. This indicates that feedback from the anterior campaniform sensillum comprises a significant component of the drive to both FETi and flexor activity during co-contraction in mature animals and that the changes in this feedback contribute to the developmental change in behaviour.Abbreviations aCS anterior campaniform sensillum - ETi extensor tibiae - FETi fast extensor tibiae motor neurone - FlTi flexor tibiae - pCS posterior campaniform sensillum  相似文献   

9.
The patterns of myographic activity in the flexor and extensor tibiae muscles of the locust which accompany learned tibial extension were examined. Three distinct motor strategies were identified: (1) repeated flexion-extension movements, each of which resulted in a momentary excursion beyond the required, pre-set joint angle (demand angle) and in sum met the criterion for learning; (2) changes in basic muscle tonus, which resulted in maintained shifts in tibial position without discernible myographic activity; (3) tonic activity in the single slow excitatory motoneuron of the extensor tibiae ( SETi ) which produced maintained tibial extension. These strategies were selectively employed depending on the particular range of joint angle required. These strategies were compared and their effectiveness evaluated using a variety of behavioral criteria. Neuronal mechanisms which might underlie each of these strategies are discussed.  相似文献   

10.
Metathoracic limb buds have been unilaterally ablated from locust embryos at 25 to 30% of embryonic development and the effect of this operation on the axon morphology of the motorneuron fast extensor tibiae (FETi) observed at later embryonic stages. In control embryos this neuron sends a single axon out the main leg nerve, nerve 5, to the extensor tibiae muscle in the femur. In limb ablated embryos the axon of FETi is found in a wide variety of aberrant peripheral nerve pathways and projects to a wide range of foreign muscles. There is a degree of apparent selectivity, but no rigid hierarchy, in the choice of pathway and muscle made by FETi. A high degree of variability is found between one embryo and another in the extent and pattern of axon branching. The axon of FETi is generally found in pathways that correspond to nerves in control embryos but on occasion grows along novel routes. An anteriorly directed dendritic branch, seldom seen in control FETi neurons, is frequently seen in experimental FETis. These findings are discussed in terms of the rules for specific axon growth in normal development.  相似文献   

11.
Summary Failure of conduction of nerve impulses has been observed at the bifurcation point of the metathoracic slow extensor tibiae motor axon (SETi) ofDecticus albifrons. Records from the region proximal and distal to the bifurcation point of the axon showed that during prolonged and repetitive stimulation and after a certain number of stimuli, proportional to the stimulating frequency, some SETi action potentials failed to cross this point (Fig. 1).Cross-sections of the metathoracic extensor motor nerve ofD. albifrons show that at the region of axonal bifurcation, both the neural lamella and the layer of glial cells (the sheath) around the SETi axons became thinner than the region proximal and distal to the bifurcation (Fig. 2).The possible role of the conduction block in the neuronal control of the muscle has been discussed.Abbreviations ETi extensor tibiae - SETi slow extensor tibiae - PE proximal electrode - DE distal electrode - SE stimulating electrode  相似文献   

12.
Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10?8M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.  相似文献   

13.
1.  Two campaniform sensilla (CS) on the proximal tibia of a hindleg monitor strains set up when a locust prepares to kick, or when a resistance is met during locomotion. The connections made by these afferents with interneurones and leg motor neurones have been investigated and correlated with their role in locomotion.
2.  When flexor and extensor tibiae muscles cocontract before a kick afferents from both campaniform sensilla spike at frequencies up to 650 Hz. They do not spike when the tibia is extended actively or passively unless it encounters a resistance. The fast extensor tibiae motor neurone (FETi) then produces a sequence of spikes in a thrusting response with feedback from the CS afferents maintaining the excitation. Destroying the two campaniform sensilla abolishes the re-excitation of FETi.
3.  Mechanical stimulation of a single sensillum excites extensor and flexor tibiae motor neurones. The single afferent from either CS evokes EPSPs in the fast extensor motor neurone and in certain fast flexor tibiae motor neurones which follow each sensory spike with a central latency of 1.6 ms that suggests direct connections. The input from one receptor is powerful enough to evoke spikes in FETi. The slow extensor motor neurone does not receive a direct input, although it is excited and slow flexor tibiae motor neurones are unaffected.
4.  Some nonspiking interneurones receive direct connections from both afferents in parallel with the motor neurones. One of these interneurones excites the slow and fast extensor tibiae motor neurones probably by disinhibition. Hyperpolarization of this interneurone abolishes the excitatory effect of the CS on the slow extensor motor neurone and reduces the excitation of the fast. The disinhibitory pathway may involve a second nonspiking interneurone with direct inhibitory connections to both extensor motor neurones. Other nonspiking interneurones distribute the effects of the CS afferents to motor neurones of other joints.
5.  The branches of the afferents from the campaniform sensilla and those of the motor neurones and interneurones in which they evoke EPSPs project to the same regions of neuropil in the metathoracic ganglion.
6.  The pathways described will ensure that more force is generated by the extensor muscle when the tibia is extended against a resistance. The excitatory feedback to the extensor and flexor motor neurones will also contribute to their co-contraction when generating the force necessary for a kick.
  相似文献   

14.
There is a change in the synaptic connections between motor neurones that underlie locust kicking and jumping during maturation following the adult moult. The fast extensor tibiae (FETi) motor neurone makes monosynaptic excitatory connections with flexor tibiae motor neurones that have previously been implicated in maintaining flexor activity during the co-contraction phase of jumping, in which energy generated by the muscles of a hind leg is stored. The amplitude of the FETi spike decreases when repetitively activated, and this decrement is larger in locusts immediately following the adult moult than in mature locusts. The decrement in␣the FETi spike is correlated with a greater decrease in the amplitude of the flexor excitatory postsynaptic potential (EPSP) in newly moulted locusts and in turn with the failure of these locusts to kick or jump. The results presented here indicate that the developmental change in the connections between the motor neurones contributes to the change in behaviour following the moult. Accepted: 28 April 1997  相似文献   

15.
Intracellular records from somata of FETi and SETi were performed during sinusoidal and rampwise stimulation of the femoral chordotonal organ. The responses were larger on average in SETi but this could be random. All other parameters (form of amplitude-frequency plot, phase-frequency plot, half-lives of rise and fall during ramp-wise stimulations) were not significantly different for both neurons. The responses of both neurons are symmetrical for stretch and release stimuli. Thus, these motor neurons are the decisive rectifiers for the extensor part of the femurtibia control loop. The habituation of FETi during repetitive stimulation is produced by a decrease in response amplitude together with a hyperpolarizing dc-shift. The imput of both neurons behaves like the output of a lead-lag-system with a predominant phasic component, whose high-pass filter has a time constant which depends on input slope. The nonlinear high-pass filter properties which are one important cause of catalepsy can thus be attributed to properties of interneurons and/or chordotonal organ. For most parts of the simulation of the femur-tibia control system (Cruse and Storrer, 1977) the anatomical and physiological correlates could be shown (Fig. 13).  相似文献   

16.
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.  相似文献   

17.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

18.
The histochemical ATPase activity and the myosin light chains of a rat fast muscle (extensor digitorum longus, EDL) and a rat slow muscle (soleus) during development have been investigated. Both muscles initially synthesize fast myosin light chains and show the intense histochemical ATPase activity characteristic of adult fast muscle fibers. After birth, the soleus begins to accumulate slow fibers with their characteristic low histochemical ATPase activity, and slow myosin light chains begin to appear. Sciatic neurectomy prevents the development of slow fibers and the synthesis of slow myosin light chains in the soleus, while the EDL is unaffected. Similarly, cordotomy of an adult rat results, in the soleus, in the appearance of fibers with more intense staining for ATPase and an increase in fast myosin light chains. The EDL is unchanged by cordotomy. As a result, we suggest that slow muscle development, but not fast muscle development, is dependent upon the functional activity of the nervous system.  相似文献   

19.
Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmann in J Comp Physiol A 191:1037–1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. One possible neural mechanism for the transformation from walking to inside leg turning could be that the descending commands alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: first, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern without descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in this paper by experiments on chordotonal organ reflexes. The activity of depressor muscle (Ds) and slow extensor tibia muscle (SETi) was excited and inhibited by stretching and relaxing the femoral chordotonal organ. However, the Ds responses were altered after eliminating the descending activity, while the SETi responses remain similar. The inhibition to Ds activity by stretching the coxal chordotonal organ was also altered after eliminating the descending activity.  相似文献   

20.
We have combined kinematic and electromyogram (EMG) analysis of running Blaberus discoidalis to examine how middle and hind leg kinematics vary with running speed and how the fast depressor coxa (Df) and fast extensor tibia (FETi) motor neurons affect kinematic parameters. In the range 2.5–10 Hz, B. discoidalis increases step frequency by altering the joint velocity and by reducing the time required for the transition from flexion to extension. For both Df and FETi the timing of recruitment coincides with the maximal frequency seen for the respective slow motor neurons. Df is first recruited at the beginning of coxa-femur (CF) extension. FETi is recruited in the latter half of femur-tibia (FT) extension during stance. Single muscle potentials produced by these fast motor neurons do not have pronounced effects on joint angular velocity during running. The transition from CF flexion to extension was abbreviated in those cycles with a Df potential occurring during the transition. One effect of Df activity during running may be to phase shift the beginning of joint extension so that the transition is sharpened. FETi is associated with greater FT extension at higher running speeds and may be necessary to overcome high joint torques at extended FT joint angles. Accepted: 24 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号