首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

2.
Summary Activation of lymphocytes by interleukin-2 (IL-2) induces lymphokine-activated killer (LAK) cells that show promising effects on tumour growth in clinical trials. We examined the effect of the superantigen staphylococcal enterotoxin A (SEA) on anti-tumour activity of freshly prepared human lymphocytes. Picomolar amounts of SEA rapidly induced cytotoxic activity against K562 and Raji cells as well as some natural-killer(NK)-resistant tumour cell lines. Cytotoxic activity was not dependent on target cell expression of either major histocompatibility complex (MHC) class I or II antigens as shown using mutated cell lines. Cell-sorting experiments showed that the activity was expressed by NK (CD5CD56+) as well as T (CD5+) cells, although the former contained the majority of cytotoxic activity. NK cells could not be directly activated by SEA. In contrast, SEA activated purified T cells to the same extent as in bulk cultures. It is suggested that SEA activation of NK cells is secondary to that brought about by lymphokines produced by T cells. Activation of LAK cells with SEA was comparable in magnitude as well as target cell spectrum to that of IL-2. In addition to the LAK-like cytotoxic activity induced by SEA, a superimposed cytotoxicity towards target cells expressing MHC class II antigens coated with SEA was observed. This staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity (SDCC) was exclusively mediated by T cells. It is well established that MHC class II antigens function as receptors for staphylococcal enterotoxins on mammalian cells and that the complex between MHC class II antigen and — SEA apparently functions as a target structure for activated T cells with target cell lysis as a consequence. Activation of T lymphocytes with IL-2 also resulted in the capability to mediate SDCC. Staphylococcal enterotoxins represent a novel way of inducing anti-tumour activity in human lymphocytes, which could be of value in therapeutic applications.  相似文献   

3.
Staphylococcal enterotoxins (SE) activate human T cells in vitro. This requires the presence of Ia+ accessory cells but does not require processing of the toxin by the accessory cell. We and others have recently demonstrated direct binding of SE to human MHC class II molecules. In this study, we have compared in detail the ability of class II molecules to bind two SE, toxic shock syndrome toxin-1 (TSST-1) and SEB. Scatchard analysis of equilibrium binding data indicate that SEB binds to Ia+ human cell lines with a 10-fold lower affinity than TSST-1. Likewise, SEB precipitates HLA-DR alpha- and beta-chains from detergent lysates of Ia+ cells less efficiently than TSST-1. The binding of TSST-1 and SEB to transfected L cells expressing HLA-DR and HLA-DQ gene products was differentially inhibited by anti-HLA-DR mAb. There was virtually no cross-inhibition of TSST-1 and SEB in competitive binding assays. We conclude that TSST-1 and SEB bind to two MHC class II sites which can be distinguished by their relative accessibility to blocking by anti-class II mAb and heterologous toxin.  相似文献   

4.
Acid treatment, where cells are exposed to 0.2 M citric acid buffer at pH 3 for 2 min, was described in a previous paper to be a method which specifically eliminates class I MHC antigens from the membrane of viable cells. We applied this method to characterize functional roles of class I MHC antigens on the target cells in NK cell cytotoxicity. When NK target cells, U937, Molt-4, and Raji, were subjected to acid treatment, the treated cells lost their surface class I MHC antigens and became more sensitive to NK cell killing. On the other hand, the susceptibility of K562 cells which initially lacked class I MHC antigens did not significantly change after such treatment. We then examined the mechanism which enables NK cells to become more cytotoxic against class I MHC antigen-eliminated target cells. Single cell binding assay and cold target inhibition assay demonstrated that class I MHC antigen-eliminated target cells did not acquire high binding affinity to NK cells. However, the interaction between NK cells and class I MHC antigen-eliminated targets resulted in a greater increase in production of NKCF-like factor than did the interaction between NK cells and untreated targets. Class I MHC antigen-eliminated targets did not acquire high killer susceptibility to NKCF-like factor. The present study utilizing the acid treatment method confirmed that surface class I MHC antigens on the targets are important immunoregulatory molecules not only for cytotoxic T lymphocytes but also for NK cells and elucidated some of the underlying mechanisms.  相似文献   

5.
Staphylococcal enterotoxins (SE) are known to stimulate a large proportion of T cells. SE bind to MHC-class II molecules on APC and a particular segment of certain TCR V beta and V gamma gene products. Resting human T cells do not express HLA class II Ag and therefore cannot present SE to T cells. Activated human T cells, however, do express HLA-DR, -DP, and -DQ Ag and could consequently serve as APC for SE. As such, local immune responses to SE might be regulated and/or abrogated by SE-mediated T-T cell interactions leading to T cell destruction. We have investigated if such SE-mediated T-T cell interactions can occur in vitro using human cytolytic TCR-alpha beta+ and TCR-gamma delta+ T cell clones. We demonstrate that the TCR-alpha beta+ T cell clones can efficiently present staphylococcal enterotoxin A (SEA) to each other: T cell clones coated with SEA are lysed by SEA-reactive T cell clones but not by a SEA-nonreactive T cell clone. Furthermore, the SEA-reactive TCR-alpha beta+ clones (but not the SEA-nonreactive clone) destruct themselves in the presence of SEA at low concentrations of SEA (less than 0.01 microgram/ml). Also, SEA-coated T cell clones can induce proliferative responses although such responses are much weaker than those induced when B cells are used as stimulator cells. In contrast, the SEA-reactive TCR-gamma delta+ T cell clones are resistant to autokilling in the presence of SEA and they do not lyse SEA-coated TCR-gamma delta+ targets. However, such targets can be lysed by TCR-alpha beta+ effector cells. These results indicate that TCR-gamma delta+ cells are relatively resistant to lysis and that during local nonspecific immune responses triggered by SE, which induces HLA-class II expression by the responding T cells, SE-mediated T-T cell interactions may play a role in the regulation and/or abrogation of these immune responses.  相似文献   

6.
Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines   总被引:16,自引:0,他引:16  
Staphylococcal enterotoxin A (SEA) is a potent polyclonal T cell activator. Its activating effect is entirely dependent upon its binding to accessory cells. Monocytes, B cells, and B lymphomas can bind SEA and support activation of T cells. We have earlier found that Raji cells are particularly efficient as accessory cells for SEA-induced T cell proliferation. In the present investigation we have used this cell line for the isolation and characterization of the membrane molecule to which SEA binds. Flow cytometric analysis of cells dually stained with SEA and anti-HLA-DR mAb showed that the amount of bound SEA was proportional to the HLA-DR expression. Electrophoresis of detergent extracts of Raji cells revealed one distinct SEA-binding band with a Mr of 60 to 65 kDa. This band had the same electrophoretic mobility as the MHC class II molecules. A mAb (G8) with the ability to block SEA binding to Raji cells was established. This mAb was shown to bind to the HLA-DR molecule. Both the G8 mAb and an anti-HLA-DR mAb 9-49 inhibited SEA binding to accessory cells and also inhibited SEA-induced, but not PHA-induced, T cell proliferation and production of IL-2. Immunoprecipitation with specific anti-HLA-DR and anti-HLA-DQ mAb demonstrated that SEA binds to the HLA-DR molecule but not to the HLA-DQ molecule. Binding SEA to Raji cells followed by cross-linking and detergent solubilization of cell membranes, electrophoresis, and Western blotting resulted in two SEA-containing bands corresponding to a Mr of 90 and 105 kDa, respectively. Both these bands also contained the HLA-DR molecule and their appearance could be blocked by preincubation of the Raji cells with the G8 mAb. Collectively the results show that the HLA-DR molecule is the main functional molecule for binding of SEA to accessory cells and that this binding of SEA to HLA-DR is a necessary requirement for SEA-induced T cell activation.  相似文献   

7.
A number of cell surface molecules are differentially expressed on functionally distinct subsets of CD4+ T cells. However, to date CD4+ T cells capable of becoming CTL have not been shown to be phenotypically distinct from other CD4+ T cells, and in the current study we examined the ability of Leu 8+ and Leu 8- CD4+ subpopulations to become cytotoxic effectors after their stimulation with allogeneic lymphoblastoid cell lines. Although CD4+, Leu 8+ cells proliferated more vigorously than CD4+, Leu 8- cells in primary cultures stimulated with allogeneic LCL, the CD4+, Leu 8- population was the major source of cytotoxic effectors, killing targets with specificity for their class II MHC alloantigens. In most subjects, CD4+ precursors of CTL were distinguished not only by their lack of Leu 8 expression but also by their relatively high density of CD2, LFA-1, and LFA-3, molecules known to mediate non-specific cell-to-cell adhesion and postulated to be markers of immunologic memory. The absence of Leu 8 does not appear to be a reliable memory cell marker, however, because Leu 8+ as well as Leu 8-, CD4+ cells from PPD skin test positive subjects responded to the recall Ag, PPD. During 3 mo of continuous culture with allogeneic stimulators, Leu 8- cells retained their cytolytic activity and remained unreactive with anti-Leu 8 mAb, whereas Leu 8+ cells remained non-cytolytic and reactive with anti-Leu 8, suggesting that under the conditions used the Leu 8 phenotype is relatively stable. PHA or anti-CD3 mAb enhanced non-specific killing by alloantigen-stimulated CD4+,Leu 8- lines but failed to unmask any cytolytic potential in CD4+,Leu 8+ lines. We conclude that MHC class II-specific cytolytic CD4+ T cells can be distinguished from non-cytolytic CD4+ cells on the basis of their surface phenotype, and that most CD4+ CTL are contained within the Leu 8- subpopulation.  相似文献   

8.
Cytotoxic T lymphocytes (CTLs) are key effector cells in the immune response against viruses and cancers, killing targets with high precision. Target cell recognition by CTL triggers rapid polarization of intracellular organelles toward the synapse formed with the target cell, delivering cytolytic granules to the immune synapse. Single amino acid changes within peptides binding MHC class I (pMHCs) are sufficient to modulate the degree of killing, but exactly how this impacts the choreography of centrosome polarization and granule delivery to the target cell remains poorly characterized. Here we use 4D imaging and find that the pathways orchestrating killing within CTL are conserved irrespective of the signal strength. However, the rate of initiation along these pathways varies with signal strength. We find that increased strength of signal leads to an increased proportion of CTLs with prolonged dwell times, initial Ca2+ fluxes, centrosome docking, and granule polarization. Hence, TCR signal strength modulates the rate but not organization of effector CTL responses.  相似文献   

9.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

10.
Murine allogeneic cytolytic T lymphocytes (CTLs), including long-term bulk CTL lines, were induced in I-region-incompatible combinations of strains in vitro in order to study the phenotypes of class II major histocompatibility complex (MHC) antigen-specific CTLs, as well as the possible functional involvement of accessory cell interaction molecules such as Lyt-2 and L3T4. This report shows that class II-specific allogeneic CTL populations consist of two types of T cells. Lyt-2+L3T4- (2+4-) and Lyt-2-L3T4+ (2-4+), in variable proportions depending on the strain combination, that in vitro bulk CTL lines with each of these phenotypes can be established, that the killing function of 2-4+ CTL is sensitive to the blocking effect of anti-L3T4 antibodies, suggesting functional involvement of this molecule in the CTL-target interaction, that anti-Lyt-2 antibodies fail to block killing by 2+4- cells, suggesting that such CTLs do not utilize this molecule in their killing function, and that while I-A-specific CTLs of both phenotypes are detectable, 2-4+ cells could not be detected among I-E-specific CTL populations.  相似文献   

11.
The T cell response to microbial T cell mitogens (MTM) such as enterotoxins from Staphylococcus aureus (SE) and the soluble mitogen from Mycoplasma arthritidis, resemble the minor lymphocyte stimulatory locus (Mls) response in several aspects. An important feature of the Mls response is it restriction to CD4+ cells. This study demonstrates that in contrast to Mls, the MTM response includes both CD4+ and CD8+ subsets. Both CD4+ and CD8+ cells expanded in IL-2 after stimulation with SEB showed preferential expression of T cell receptors bearing V beta 8 domains. Mouse and human target cells could be lysed in the presence of MTM both by MTM-stimulated CD8+ lymphocytes and by MHC class I-restricted CTL clones of defined Ag specificity. MTM-induced lysis required the expression of MHC class II, but not class I Ag, on the target cells. Inhibition studies of SEB and Ag-dependent cytolysis by CTL clones underlined the crucial role of CD3 and LFA-1 in both instances, but showed CD8 dependence only for AG-dependent cytolysis. Together these findings suggest important differences between the putative MTM-mediated interaction of TCR with MHC molecules and the classical TCR/MHC interaction involved in MHC-restricted Ag recognition.  相似文献   

12.
Human papillomavirus (HPV)-encoded proteins may provide targets for CD8+ or CD4+ T lymphocytes infiltrating into cervical cancer. We established an MHC class II-restricted CD4+ T cell line from a patient with cervical cancer that recognizes autologous (HPV35+, HPV59+) cervical cancer cells and the HLA-DR4-matched cervical cancer cell line Me180 (HPV68+) as determined by TNF-alpha secretion. Expression of different HPV-E7 genes in autologous B cells revealed that this T cell line defines a DR4-presented T cell epitope that is shared among the E7 genes of HPV59 and HPV68. MHC class II-presented peptides may be implemented to augment T cell responses directed against autologous tumor cells, particularly if cancer cells lack MHC class I expression, which is a frequent event in the evolution of cervical cancer.  相似文献   

13.
The enterotoxins produced by Staphylococcus aureus (SE) are the most potent mitogens known. Triggering of proliferation or cytotoxicity by SE requires the presence of MHC class II molecules on accessory or target cells. In this study we have investigated the role of HLA class II molecules in the activation of human T cells by SE and the nature of the target structure on the responding T lymphocyte for SE. This dependence on class II molecules is not due to an immunological "recognition" of SE since there is no restriction by polymorphic determinants of HLA molecules and since even xenogeneic class II molecules can reconstitute the human T cell response to SE. Furthermore, HLA class II-positive but not -negative cells absorb the mitogenic activity from SE solutions and significant binding of 125I-labeled SE can be demonstrated to class II-positive but not to class II-negative cells. Enterotoxin molecules react directly with T cells since they cause an increase in cytosolic Ca2+ concentration similar to anti-CD3 mAb. This increase is abrogated by prior modulation of the TCR/CD3 complex. Antibodies to CD2, CD3 and the TCR that block antigen-specific activation also block T cell activation by SE. Moreover, preincubation of purified resting accessory cell-free T cells with SE leads to modulation of the TCR/CD3 complex. Taken together these data indicate that SE interact selectively with HLA class II molecules on accessory or target cells and with a TCR-associated structure on the T cell.  相似文献   

14.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

15.
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.  相似文献   

16.
Superantigen-based tumor therapy: in vivo activation of cytotoxic T cells   总被引:23,自引:0,他引:23  
We have recently demonstrated that the superantigen staphylococcal enterotoxin A (SEA) targets in vitro activated cytotoxic T lymphocytes against tumor cells expressing major histocompatibility complex (MHC) class II antigens. In this report we analyze the use of SEA as an immunoactivator in vivo. Treatment of mice with SEA activated a fraction of CD3+ T cells apparently as a function of their T cell receptor V expression. SEA induced interleukin-2 receptor expression and proliferation in both CD4+ and CD8+ T cells. This proliferative response was dose-dependent (0.1 – 100 µg/mouse), peaked during day 1 after treatment and declined to background levels within 4 days. The cytotoxic response, measured as cytotoxicity to SEA-coated MHC class II+ target cells (staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity, SDCC), was maximal at a dosage of 1 µg SEA/mouse. The SDCC was confined to the CD8+ T cell compartment, peaked 2 days after treatment and declined to background levels within 4 days. A second injection of SEA on day 5 after the first SEA treatment resulted in SDCC function with kinetics and magnitude identical to that seen after one injection. These results pave the way for the use of SEA in the treatment of MHC class II+ tumors.  相似文献   

17.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

18.

Background

Dendritic cell (DC) transmission of human immunodeficiency virus (HIV) to CD4+ T cells occurs across a point of cell-cell contact referred to as the infectious synapse. The relationship between the infectious synapse and the classically defined immunological synapse is not currently understood. We have recently demonstrated that human B cells expressing exogenous DC-SIGN, DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin, efficiently transmit captured HIV type 1 (HIV-1) to CD4+ T cells. K562, another human cell line of hematopoietic origin that has been extensively used in functional analyses of DC-SIGN and related molecules, lacks the principal molecules involved in the formation of immunological synaptic junctions, namely major histocompatibility complex (MHC) class II molecules and leukocyte function-associated antigen-1 (LFA-1). We thus examined whether K562 erythroleukemic cells could recapitulate efficient DC-SIGN-mediated HIV-1 transmission (DMHT).

Results

Here we demonstrate that DMHT requires cell-cell contact. Despite similar expression of functional DC-SIGN, K562/DC-SIGN cells were inefficient in the transmission of HIV-1 to CD4+ T cells when compared with Raji/DC-SIGN cells. Expression of MHC class II molecules or LFA-1 on K562/DC-SIGN cells was insufficient to rescue HIV-1 transmission efficiency. Strikingly, we observed that co-culture of K562 cells with Raji/DC-SIGN cells impaired DMHT to CD4+ T cells. The K562 cell inhibition of transmission was not directly exerted on the CD4+ T cell targets and required contact between K562 and Raji/DC-SIGN cells.

Conclusions

DMHT is cell type dependent and requires cell-cell contact. We also find that the cellular milieu can negatively regulate DC-SIGN transmission of HIV-1 in trans.  相似文献   

19.
Tumor cells often escape immunosurveillance by down-regulating MHC class I molecule expression. For human Vgamma9Vdelta2 T cells, a major peripheral blood T cell subset with broad antitumor reactivity, this down-regulation can affect signals transmitted by both the inhibitory and the activating MHC class I and Ib-specific NK receptors (NKRs) that these lymphocytes frequently express. To assess the overall impact of MHC down-regulation on Vgamma9Vdelta2 T cell activation, we used stable beta(2)-microglobulin knockdown to generate tumor cells with a approximately 10-fold down-modulation of all MHC class I molecules. This down-modulation had little effect on T cell proliferation or cytokine production, but modified tumor cell killing efficiency. Ab-blocking studies identified ILT2 as an important inhibitor of tumor cell killing by Vgamma9Vdelta2 T cells. Down-modulation of MHC class I and Ib molecules severely reduced ILT2 inhibitory signaling, but still allowed signaling by activating CD94-based receptors. It also unveiled a frequent enhancing effect of NKG2D on tumor killing by Vgamma9Vdelta2 T cells. Current models suggest that activating NKRs have less affinity for their MHC ligands than homologous inhibitory NKRs. Our results show that, despite this, activating NKRs recognizing MHC class I molecules play an important role in the increased killing by Vgamma9Vdelta2 T cells of tumor cells with down-regulated MHC class I molecule expression, and suggest that these T cells will best lyse tumor cells combining MHC class I molecule expression down-regulation with up-regulated NKG2D ligand expression.  相似文献   

20.
In searching for immunogenic molecules with the potential to induce protective immune responses against tuberculosis, we developed an ex vivo model to study frequency, phenotype, and effector functions of human T lymphocytes recognizing hydrophobic Ags of Mycobacterium tuberculosis (M.Tb). To obtain unbiased results, we characterized T lymphocytes responding to a crude cell wall extract (chloroform methanol extract of M.Tb (M.Tb-CME)) containing a broad spectrum of mycobacterial glycolipids and lipopeptides. A significant proportion of T lymphocytes recognized M.Tb-CME (290 IFN-gamma+ T cells/10(5) PBMCs) and developed to effector memory cells as determined by the expression of CD45RO and the chemokine receptors CXCR3 and CCR5. Expanded lymphocytes fulfilled all criteria required for an efficient immune response against tuberculosis: 1) release of macrophage-activating Th1 cytokines and chemokines required for the spatial organization of local immune responses, 2) cytolytic activity against Ag-pulsed macrophages, and 3) recognition of infected macrophages and killing of the intracellular bacteria. Phenotypically, M.Tb-CME-expanded cells were CD4+ and MHC class II restricted, challenging current concepts that cytotoxic and antimicrobial effector cells are restricted to the CD8+ T cell subset. Pretreatment of M.Tb-CME with protease or chemical delipidation abrogated the biological activity, suggesting that responses were directed toward mycobacterial lipopeptides. These findings suggest that lipidated peptides are presented by M.Tb-infected macrophages and elicit CD4+ cytolytic and antimicrobial T lymphocytes. Our data support an emerging concept to include hydrophobic microbial Ags in vaccines against tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号