首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
High-mobility-group protein 17 (HMG-17) was identified by reversed-phase high-performance liquid chromatography analysis as a major component in acidic extracts of transplantable rat glucagonoma tissue but not in insulinoma tissue of similar origin. The peptide was purified in a single step and the entire sequence of 89 amino acids was determined. Rat HMG-17 has a molecular mass of 9238 Da and shows strong similarity to human, bovine (94.4%) and chicken (88.8%) HMG-17. Six of the seven residues which vary among the mammalian sequences are located within a short segment (positions 64-83) present in the acidic, non-DNA-binding C-terminal part of HMG-17. This region shows least similarity to the otherwise related proteins HMG-14 and H6 (a trout HMG protein). Interestingly, four of the six variable positions are Asp in rat HMG-17 which results in an overall net increase in the negative charge of the C-terminal region. The nature of selective hyper-expression of HMG-17 in glucagon but not in insulin-producing tumor tissue remains to be clarified.  相似文献   

7.
8.
HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover, that DT40-derived cells lacking both HMG-17 and HMG-14a proteins show no obvious change in phenotype with respect to the parental DT40 cells. Furthermore, no compensatory changes in HMG-14b or histone protein levels were observed in cells lacking both HMG-14a and HMG-17, nor were any alterations detected in such hallmarks of chromatin structure as DNaseI-hypersensitive sites or micrococcal nuclease digestion patterns. It is concluded that the HMG-14a and HMG-17 proteins are not required for normal growth of avian cell linesin vitro, nor for the maintenance of DNaseI-hypersensitive sites in chromatin.  相似文献   

9.
10.
Chromosomal proteins HMG-14 and HMG-17 have a modular structure. Here we examine whether the putative nucleosome-binding domain in these proteins can function as an independent module. Mobility shift assays with recombinant HMG-17 indicate that synthetic molecules can be used to analyze the interaction of this protein with the nucleosome core. Peptides corresponding to various regions of the protein have been synthesized and their interaction with nucleosome cores analyzed by mobility shift, thermal denaturation and DNase I digestion. A 30 amino acid long peptide, corresponding to the putative nucleosome-binding domain of HMG-17, specifically shifts the mobility of cores as compared to free DNA, elevates the tm of both the premelt and main melt of the cores and protects from DNase I digestion the same nucleosomal DNA sites as the intact protein. The binding of both the peptide and the intact protein is lost upon digestion of the histone tails by trypsin. The nucleosomal binding sites of the peptide appear identical to those of the intact protein. Thus, a region of the protein can acts as an independent functional domain. This supports the notion that HMG-14 and HMG-17 are modular proteins. This finding is relevant to the understanding of the function and evolution of HMG-14/-17, the only nucleosome core particle binding proteins known to date.  相似文献   

11.
12.
The chicken HMG-17 gene is dispensable for cell growth in vitro.   总被引:1,自引:0,他引:1       下载免费PDF全文
HMG-17 is a highly conserved and ubiquitous nonhistone chromosomal protein that binds to nucleosome core particles. HMG-17 and HMG-14 form a family of chromosomal proteins that have been reported to bind preferentially to regions of active chromatin structure. To study the functional role of the single-copy chicken HMG-17 gene, null mutants were generated by targeted gene disruption in a chicken lymphoid cell line, DT40. Heterozygous and homozygous null mutant cell lines were generated by two independent selection strategies. Heterozygous null mutant lines produced about half the normal level of HMG-17 protein, and homozygous null lines produced no detectable HMG-17. No significant changes in cell phenotype were observed in cells harboring either singly or doubly disrupted HMG-17 genes, and no compensatory changes in HMG-14 or histone protein levels were observed. It is concluded that HMG-17 protein is not required for normal growth of avian cell lines in vitro, nor does the absence of HMG-17 protein lead to any major changes in cellular phenotype, at least in lymphoid cells.  相似文献   

13.
Characterization of a human gene encoding nucleosomal binding protein NSBP1   总被引:3,自引:0,他引:3  
King LM  Francomano CA 《Genomics》2001,71(2):163-173
  相似文献   

14.
Microheterogeneity within the HMG-14 and HMG-17 group of nonhistone chromatin proteins has been investigated using reverse-phase high-performance liquid chromatography (RP-HPLC) under conditions (acetonitrile elution with 0.1% trifluoroacetic acid as a weak ion-pairing agent) which separate proteins primarily on the basis of differences in their overall hydrophobicities. Ion-pair RP-HPLC proves to be a fast and efficient means for separating multiple subspecies of both the HMG-14 and the -17 proteins from both crude nuclear extracts and from ion-exchange column-purified protein samples obtained from different types of mammalian cell nuclei. In crude nuclear extracts at least two different HMG-14 protein species (one major and one minor) and three different HMG-17 species (two major and one minor) can be resolved by ion-pair RP-HPLC. The identity and purity of these HMG-14 and -17 protein species were assayed by polyacrylamide gel electrophoresis and amino acid analysis. The amount of HMG protein microheterogeneity observed by RP-HPLC equals or exceeds that found for these proteins by other analytical techniques and the results suggest that this heterogeneity may be due to factors other than protein size or overall net charge variability.  相似文献   

15.
16.
Chromatographic fractionation on CM-Sephadex of a 0.35 M NaCl extract from calf thymus chromatin reveals the presence of a High Mobility Group (HMG) protein which comigrates electrophoretically with HMG-17. Further amino acid analysis and partial sequence determination suggest that this protein is a proteolytic degradation product of either HMG-1 or HMG-2 from which the acidic C-terminal region has been removed.  相似文献   

17.
J B Dodgson  D L Browne  A J Black 《Gene》1988,63(2):287-295
A cDNA clone coding for the chicken high-mobility group 14 (HMG-14) mRNA has been isolated from a chicken-liver cDNA library by screening with two synthetic oligodeoxynucleotide pools whose sequences were derived from the partial amino acid sequence of the HMG-14 protein. A chicken HMG-17 cDNA clone was also isolated in a similar fashion. Comparison of the two chicken HMG cDNA clones to the corresponding human cDNA sequences shows that chicken and human HMG-14 mRNAs and polypeptides are considerably less similar than are the corresponding HMG-17 sequences. In fact, the chicken HMG-14 is almost as similar to the chicken HMG-17 in amino acid sequence as it is to mammalian HMG-14 polypeptides. HMG-14 and HMG-17 mRNAs seem to contain a conserved sequence element in their 3'-untranslated regions whose function is at present unknown. The chicken HMG-14 and HMG-17 genes, in contrast to their mammalian counterparts, appear to exist as single-copy sequences in the chicken genome, although there appear to exist one or more additional sequences which partially hybridize to HMG-14 cDNA. Chicken HMG-14 mRNA, about 950 nucleotides in length, was detected in chicken liver RNA but was below our detection limits in reticulocyte RNA.  相似文献   

18.
19.
The high mobility group proteins 14 and 17 were reported previously to be phosphorylated in murine and human tumor cell lines. Recently, it was suggested that subgroups of HMG-14, HMG-14a and 14b, but not HMG-17, were phosphorylated in situ in HeLa cells. In order to definitively determine whether HMG-17 is indeed phosphorylated or whether the protein previously identified as [32P]HMG-17 was a subgroup of HMG-14, we have used the technique of electroblotting in conjunction with an immunochemical procedure utilizing anti-HMG-17 IgG. Our results indicate that HMG-17 was not phosphorylated in human colon carcinoma cell line HT-29 incubated for 18 h with 32Pi, but that HMG-14a and HMG-14b were phosphorylated. In contrast, HMG-14a, -14b and -17 were phosphorylated in vitro in isolated nuclei incubated with [γ-32P]ATP.  相似文献   

20.
The high mobility group (HMG) chromosomal proteins may modulate the structure of distinct regions in chromatin, thereby affecting processes such as development and differentiation. Here we report that the levels of the HMG chromosomal proteins and their mRNAs change significantly during erythropoiesis. Erythroid cells from 5-day chicken embryos contain 2.5-10 times more HMG mRNAs than cells from 14-day embryos, whereas circulating cells from adult animals are devoid of HMG and most other mRNAs. Nuclear run-off experiments and Northern analysis of RNA from various developmental stages and from Percoll-fractionated cells indicate that the genes are transcribed in early cells of either the primitive or definitive erythroid lineage. The rate of synthesis of the various HMGs changes during erythropoiesis; in erythroid cells from 7-day embryos the ratio of HMG-14b or HMG-17 to HMG-14a is, respectively, 8 and 10 times lower than in 9-day erythroids. HMG-14a, the major chicken HMG-14 species, is synthesized mainly in primitive cells, while HMG-14b is preferentially synthesized in definitive cells. Thus, the change from primitive to definitive erythroid lineage during embryogenesis is accompanied by a change in the expression of HMG chromosomal proteins. Conceivably, these changes may affect the structure of certain regions in chromatin; however, it is not presently clear whether the switch in HMG protein gene expression is a consequence or a prerequisite for proper differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号