首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of metal perclorate complexes of N- isopropyl-2-pyrrolidinone (NIPP) and N-cyclohexyl- 2-pyrrolidinone (NCHP) have been synthesized, showing coordination through the carbonyl oxygen atom. These complexes have compositions with the general formulas [M(NIPP)4 or 6]2+(ClO4)2 and [M(NCHP)6]2+(ClO4)2 [M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)]. They have been characterized by IR spectra, electrical conductivity measurements, magnetic moments, X-ray diffraction patterns and electronic absorption spectra.  相似文献   

2.
The rate laws for the earliest events in the transmetalation of dimeric copper(I) complexes L2Cu2X2 (L = N,N,N′N′-tetraalkyldiamine; X = Cl or Br) by M(NS)2 reagents (M = Co, Ni, Cu, Zn; NS is a monoanionic S-methylhydrazinecarbodithioate Schiff base ligand) depend on L, X, M and NS and the aprotic solvent. The kinetic data are compared with those for monotransmetalation of copper(II) complexes (μ4-O)N4Cu4X6 by M(NS)2. Different kinetic behavior is particularly marked for cobalt(II) reactants. Unexpectedly high rates of reactions with Cu(NS)2 are attributed to electron transfer. The results provide a basis for discussion of transmetalation specificity.  相似文献   

3.
《Inorganica chimica acta》1986,118(2):157-164
Copper(II) complexes with 2-methylamino-3-picoline N-oxide (3MMH) and 2-ethylamino-3-picoline N- oxide (3MEH) have been prepared from the following salts: tetrafluoroborate, nitrate, chloride, bromide and acetate. Solids of the general formula [Cu(LH)4]- (X2) (where LH = either ligand when X = BF4tau; and LH = 3MMH when X = NO3tau; ); [Cu(3MEH)2- (ONO2)2]; [Cu(LH)X2] (where LH = either ligand and X = Cltau; , Brtau; ) and CuL2 (where L = either ligand's conjugate base) were characterized using spectral methods (i.e., IR, UV-Vis and ESR). Both coordinate as monodentate ligands via their N-oxide oxygen in their complexes with salts having polyatomic anions. They bond as neutral bidentate ligands in their halide complexes, but as anionic bidentate ligands in the complexes formed from copper(II) acetate. The bonding to Cu(II) ccnters via the N-oxide oxygen is the strongest tor these two ligands based on spectral data than any of the 2-aminopyridine N-oxides or 2- aminopicoline N-oxides studied to date.  相似文献   

4.
New complexes of the general compositions M(LH)X2 (M = Co, Zn; X = Cl, Br, I), Zn(LH)(NCS)2, Zn(LH)(NO3)2 ·H2O, Cu(LH)X2 (X = Cl, Br, ONO2), Ni(LH)Cl2·H2O, Co(LH)2X2 (X = NCS, ONO 2), Ni(LH)2X2 (X = Cl, Br, NCS, ONO2), Pt(LH)2Cl2 and MLCl·nH2O (M = Ni, Cu, Pd; n = 2, 3), where LH = N-(2-pyridyl)pyridine-2′-carboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, X-ray powder patterns, thermal methods, magnetic susceptibilities and spectroscopic (IR, ligand field, 1H NMR) studies. Pseudotetrahedral, square planar, square pyramidal and distorted octahedral stereochemistries are tentatively assigned in the solid state. Most complexes appear to be monomeric, while polymeric structural types are attributed for Ni(LH)Cl2·H2O and CuLCl·2H2O. The neutral amide group of LH is coordinated to Co(II), Ni(II), Cu(II) and Zn(II) through oxygen, while N-coordination is observed for PdLCl·2H2O. The amide group of L is bound to different Cu(II) atoms in CuLCl·2H2O through both its nitrogen and oxygen. The rare O-coordination of the deprotonated amide bound is proposed for NiLCl· 3H2O. The N(1) atom is not involved in coordination except in the complexes Ni(LH)Cl2·H2O, NiLCl· 3H2O and CuLCl·2H2O, where both pyridine residues are coordinated. The variation in structural types observed is believed to be a consequence of the stereochemical adaptability of the ligand to the electronic demands of the metal ions.  相似文献   

5.
5-(4-(N-tert-Butyl-N-aminoxylphenyl))pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)2(hfac)2 complexes with M(hfac)2, M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (?)7 K), and for three-spin RL—M—RL exchange in the other complexes (J/k = (?)26 K, (?)3 K, (?)6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively).  相似文献   

6.
New complexes of the general formulae Co(o-LH)2X2 (XCl, NCS), Co(o-LH)2Br2·EtOH (EtOHethanol), M(o-LH)(NO3)2 (MCo, Ni), Ni(o-LH)2X2 (XCl, Br, NCS), Cu(o-L)X (XCl, Br), Zn(o-LH)X2 (XCl, Br), Pd(o-L)Cl, Pt(o-LH)2Cl2·H2O, M(m-LH)Cl2·nH2O (MCo, Ni, Pd; n=0, 0.5, 1), Cu(m-LH)Cl2·EtOH, M(m-LH)2Cl2·nH2O (MCo, Zn, Pt; n=0, 1), M(m-LH)Br2 (MCu, Zn), M(m-LH)2Br2 (MCo, Ni), Co(m-LH)(NCS)2 and Co(m-LH)2(NCS)2, where o-LH=N-(2-aminophenyl)quinoline-2′-carboxamide and m-LH=N-(3-aminophenyl)quinoline-2′-carboxamide, have been prepared. The complexes were characterised by elemental analyses, conductivity measurements, X-ray powder patterns, thermogravimetric analyses, magnetic moments and spectral (1H NMR, IR, and electronic) studies. Copper(II) and palladium(II) promote amide deprotonation at nearly acidic pH on coordination with o-LH. A variety of stereochemistries is assigned for the complexes prepared. The deprotonated copper(II) and the nickel(II) and palladium(II) complexes of m-LH appear to be polymeric. The neutral amide group of the ligands is coordinated to the metal ions through oxygen, while N(amide)-coordination is observed for the deprotonated complexes. Coordination of the secondary amide group is not observed for Zn(m-LH)2Cl2, Pd(m-LH)Cl2·0.5H2O and platinum(II) complexes. The neutral ligand o-LH shows bidentate N(ring), O-behaviour, while the anion o-L exhibits tridentate N,N,N-coordination. m-LH acts as a monodentate, bidentate and tridentate ligand depending on the metal ion, the anion and the preparative conditions.  相似文献   

7.
New tetradentate ligands 2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L1 and 2-chloro-2-(2-mercaptoethylthio)-N-(pyridin-2-ylmethyl)acetamide H2L2 were synthesised from the reaction of 2-aminomethanepyridine with 1,4-dithian-2-one and 3-chloro-1,4-dithian-2-one, respectively. Monomeric complexes of these ligands, of general formulae K[CrIII(Ln)Cl2], K2[MnII(Ln)Cl2] and [M(Ln)] (M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Fe(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

8.
《Inorganica chimica acta》1986,115(2):141-146
A series of new aromatic N-oxide ligands have been prepared by converting the 2-amino group of 2-aminopyridine N-oxide, 2-aminopicoline N-oxides and 2-amino-4,6-lutidine N-oxide into a urethane. Two series of copper(II) complexes have been prepared and characterized by their infrared, electronic and ESR spectra along with other physicochemical methods. One series has the stoichiometry [Cu(UOH)4](ClO4)2 and involves monodentate coordination via the N-oxide oxygen and the other series is prepared from copper(II) acetate and has the stoichiometry [Cu(UO)2]. In this latter series coordination occurs via the N-oxide oxygen and the deprotonated amino function.  相似文献   

9.
Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest as the ground state. The ligand is bidentate bonding through >C = N ? and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.  相似文献   

10.
Potentiometric, visible, and infrared studies of the complexation of N-(2-acetamido)-2-aminoethanesulfonic acid (ACESH) by Ca(II), Mg(II), Mn(II), Co(II), Zn(II), Ni(II), and Cu(II) are reported. Ca(II), Mg(II), and Mn(II) were found not to complex with ACES?, while Co(II), Zn(II), Ni(II), and Cu(II) were found to form 2:1, ACES? to M2+, complexes, and [Cu(ACES)2] was found to undergo stepwise deprotonation of the amide groups to form [Cu(H?1ACES)22?]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed.  相似文献   

11.
A new class of polydentate Mannich bases featuring an N2S2 donor system, bis((2-mercapto-N-phenylacetamido)methyl)phosphinic acid H3L1 and bis((2-mercapto-N-propylacetamido)methyl)phosphinic acid H3L2, has been synthesised from condensation of phosphinic acid and paraformaldehyde with 2-mercaptophenylacetamide W1 and 2-mercaptopropylacetamide W2, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(Ln)Cl2], K3[M′II(Ln)Cl2] and K[M(Ln)] (M′ = Mn(II) or Fe(II); M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The structures of new ligands, mode of bonding and overall geometry of the complexes were determined through IR, UV–Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) and Fe(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Co(II), Zn(II), Cd(II) and Hg(II) complexes. Complex formation studies via molar ratio in DMF solution were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

12.
《Inorganica chimica acta》2002,328(1):111-122
The electrochemical oxidation of anodic metal (nickel, copper, zinc and cadmium) in acetonitrile solutions containing N,N′-bis[(4-methylphenyl)sulfonyl]ethylenediamine H2L and an additional nitrogen coligand, such as 1,10-phenanthroline, yielded mixed complexes of general formula [ML(phen)2] (M=Ni, Cu, Zn and Cd). The compounds have been characterized by microanalysis, IR and UV-Vis (Ni, Cu complexes) spectroscopy, FAB mass spectrometry, 1H NMR spectroscopic studies (Zn, Cd complexes) and EPR spectroscopy (Cu and Ni complexes). All compounds have also been characterized by single crystal X-ray diffraction. The molecular structures of these compounds consist of individual monomeric molecules in which the metal atom is in an [MN6] distorted octahedral environment.  相似文献   

13.
《Inorganica chimica acta》1989,161(2):247-251
An X-ray structure determination is reported for the N-oxide-bridged dimeric complex [Co(poph)- (NCS)2]2 with 2-pyridinecarboxaldehyde 1-oxide 2′-pyridinylhydrazone (poph). The complex is monoclinic, P21/c, with a = 12.460(7), b = 9.884(3), c = 16.562(8) Å, β= 127.60(2)° and Z = 4. The ligand coordinates as a planar ONN tridentate via the N-oxide oxygen and the hydrazone and pyridyl nitrogens. A second out-of-ligand-plane bond from the N-oxide oxygen to another cobalt produces a centrosymmetric N-oxide-bridged structure. The in-ligand and out-of-ligand-plane CoO distances are 2.028(5) and 2.460(5) Å, respectively. Each cobalt(II) is octahedrally coordinated by two cisN- bonded thiocyanates, by an ONN-bonded poph molecule, and by a bridging N-oxide oxygen. This is the first structure report of a pyridine N-oxide. bridged cobalt(II) complex.  相似文献   

14.
《Inorganica chimica acta》1986,112(2):189-195
The synthesis, aqueous absorption and reflectance spectra, cyclic voltammetry and ligand field photochemistry of a series of M(bpym)2Cl2 (M=Mn(II), Co(II), Ni(II), Cu(II) and bpym=2,2′-bipyrimidine) are reported here. Ligand field electronic spectral assignments are made by comparison to analogous M(bpy)2Cl2(s) (bpy=2,2′-bipyridine) and M(bpym)32+ complexes. Ligand field absorption maxima are shifted to lower energy as a result of bpym loss vs. M(bpym)32+ complexes. Metal to ligand charge transfer absorption energies increase as a result of dM orbital stabilization vs. M(bpym)32+ complexes. Cyclic voltammetry indicates ring opening upon reduction of the complexes. The complexes are photochemically inert (φmax<0.002) at the irradiated wavelengths.  相似文献   

15.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

16.
The metal(II) complexes [M(4-Me-5-NH2-1-iqtsc- H)Cl2] (M = Co(II), Ni(II) or Cu(II) and 4-Me-5- NH2-1-iqtsc-H = 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone), [Zn(4-Me-5-NH2-1-iqtsc-H)- (OAc)2]· H2O and [Pt(4-Me-5-NH2-1-iqtsc)Cl)] were isolated and characterized by elemental analysis, conductance measurement, magnetic moments (300- 78 K)and spectral studies. On the basis of these studies distorted trigonal-bipyramidal structures for the Co(II), Ni(II), Cu(II) and Zn(II) complexes and a square-planar structure for the Pt(II) complex are proposed. All these complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. With the exception of the Pt(II) and Zn(II) complexes, the complexes showed no significant activity; the Zn(II) and Pt(II) complexes showed T/C (%) values of 150 and 144 at a much lesser extent [2].  相似文献   

17.
18.
The open-chain, potentially, pentadentate, ligan 1,11-bis(dimethylamino)-3,6,9-trimethyl-3,6,9,-triazaundecane (Me7tetren) forms a series of metal complexes having the general formula [M(Me7tetren)]Y2 (Y = 1, M = Co, Ni; Y = ClO4, M = Co, Ni, Cu, Zn). On the basis of their physical properties, it is suggested that all these compounds contains isostructural five-coordinate [M(Me7tetren)]2+ cations, the ligand acting as pentadentate. These complexes react in solution with thiocyanate ion to give mono- and, with exception of copper(II), di-thiocyanato five- and six-co-ordinate derivatives. Mono-thiocyanato derivatives of cobalt(II), nickel(II) and zinc(II) have been isolated as tetraphenylborate salts. Cobalt(II) and nickel (II) di-thiocyanato derivatives have been also isolated. Results are discussed in terms of the steric requirements of the ligand and electronic properties of the metal ions.  相似文献   

19.
Complexes of Mn(II), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pt(II) with 3- and 5-substituted salicylaldehyde o-hydroxybenzoylhydrazones (XSBH, X = H, 3-NO2, 3-CH3O, 5-Cl, 5-Br, 5-CH3 or 5-NO2) have been prepared and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid nitrogen temperature) and spectral studies. These studies indicate the following structures: monomeric, high-spin, distorted octahedral for Mn(XSBH)2; monomeric, high-spin, five-coordinate for Fe(XSBH)SO4·H2O; dimeric, high-spin phenoxide bridged, five-coordinate for Fe(XSBH)Cl; dimeric, high-spin five-coordinate for Co(XSBH)Cl·2H2O; dimeric low-spin, five-coordinate for Ni(XSBH)Cl·2H2O; dimeric, four-coordinate for Zn(XSBH); and a square-planar structure for M(XSBH)Cl·H2O (M = Cu(II) or Pt(II).Intermolecular antiferromagnetic exchange interactions are present in Fe(III) complexes, where the exchange parameter (J) is ca. −8.0 cm−1 for these complexes. The Fe(III) complexes exhibit asymmetric quadrupole split doublets in their 57Fe Mössbauer spectra. The asymmetry is found to be temperature dependent with relatively symmetrical doublets seen at low temperature. The polycrystalline ESR spectra of Cu(II) complexes are isotropic and indicate a dx2−y2 ground state in square-planar stereo-chemistry. All these metal complexes have been screened for their antitumor activity against the P 388 lymphocytic leukaemia test system in mice and enhanced antitumor activity relative to the free ligand was found but no significant activity at the dosages used.  相似文献   

20.
Reactions of the structural model hydrolases [M2(OAc)4(H2O)(Im)4]; M=Mn (E); M=Co (D); M=Ni (B) and [M2(OPiv)4(H2O)(tmen)2]; M=Mn (E″); M=Co (D″); M=Ni (B″) with a number of hydroxamic acids, RHA (aceto- (R=CH3), benzo- (R = C6H5) and N-phenylacetohydroxamic acid (NPhAHA)) gave a series of hydroxamate dibridged complexes [M2(OAc)(RA)2(Im)4][OTf] and [M2(OPiv)(RA)2(tmen)2][OTf]; M=Co, Ni, in which the bridging hydroxamates exhibit a novel bonding mode in which the deprotonated hydroxamate hydroxyl bridges the two metal centres only. The formation of this type of structure by NPhAHA is the first example involving a secondary hydroxamic acid. These complexes are good structural models of the acetohydroxamate-inhibited C319A variant of Klebsiella aerogenes urease (KAU) and their structures are close to those previously reported for complexes containing tmen capping ligands. Reaction with glutarodihydroxamic acid leads to hydroxylamine elimination and formation of a dimer containing deprotonated N-hydroxyglutarimide as bridging ligand but in this case the structure contains pentacoordinated Co(II) and only one bridging acetate in contrast to the tmen-based series where the analogous complex contains hexacoordinated Co(II) and two bridging acetates. Reaction of [Mn2(OAc)2(μ-OAc)2(μ-H2O)(tmen)2] with acetohydroxamic acid (AHA) gave the first structurally characterized manganese hydroxamate, [Mn2(OAc)3(AA)(tmen)2] with the same bridging/chelating mode of hydroxamate bonding as in the analogous cobalt and nickel complexes, although only one bridging hydroxamate occurs in the manganese complex in contrast to the two bridging hydroxamates in the cobalt and nickel complexes. The isolation of the dimanganese hydroxamate bridged complex suggests that hydroxamic acids may also inhibit the dimanganese based metallohydrolase, arginase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号