首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation constants of ternary complexes MAL, where M = Cu(II) or Ni(II). A = 2.2′bipyridyl. 1, 10-phenanthroline, and L = 3.4-dihydroxyphenylalanine (dopa), tyrosine, or phenylalanine have been determined by using the computer program SCOGS. It is observed that dopa coordinates with Cu(II)-A and Ni(II)-A through the aminocarboxylate and only over the pH range 3–8, though the ligand coordinates with free Cu(II) ion from the amino carboxylate end in the lower pH range (pH 2–4) and from the catechol end at the higher pH range (pH > 5). The visible spectrum of Cu-A-dopa is similar to that of Cu-A-phenylalanine or Cu-A-tyrosine over the entire pH range, confirming amino carboxylate coordination. Δ log K (KMAL - logKML) is found to be positive in all the six Cu(II) complexes. whereas it is negative in Ni(II) complexes. Release in the ternary complexes of the repulsion between the Cu(II) dπ electron and electrons delocalized over the phenyl ring has been proposed as a probable reason for the positive Δ log K.  相似文献   

2.
3.
Violet prismatic crystals of {[Cu(tn)2]3[Pt(CN)4]2}[Pt(CN)4] (tn = 1,3-diaminopropane) were crystallized from the water-methanol solution containing CuCl2·2H2O, tn and K2[Pt(CN)4]·3H2O. Prepared complex was characterized using elemental analysis, infrared and UV-Vis spectroscopy, magnetic measurement and thermal analysis. X-ray analysis revealed an ionic character of the complex containing mononuclear square planar [Pt(CN)4]2− complex anions and penta-nuclear [Cu(tn)2-Pt(CN)4-Cu(tn)2-Pt(CN)4-Cu(tn)2]2+ complex cations. The inner Cu(II) atom of the complex cation is hexa-coordinated, whereas two crystallographically equivalent peripheral Cu(II) atoms are penta-coordinated in the shape of a deformed square pyramid. Four v(CN) absorption bands observed in the IR spectrum are in agreement with the higher number of crystallographically different cyano groups and a broad highly asymmetric band observed in the reflectance UV-Vis spectrum is consistent with the presence of both hexa- and penta-coordinated Cu(II) atoms in the structure. The temperature dependence of the inverse susceptibility suggests the presence of a weak antiferromagnetic exchange coupling between Cu(II) ions. The complex is stable up to 210 °C when its two-stage thermal decomposition starts.  相似文献   

4.
Two ligands have been prepared in which N,O-bidentate chelating pyrazolyl-phenolate units, based on 3-(2-hydroxyphenyl)pyrazole, are connected via methylene linkages to aromatic (1,4-phenylene or 3,3′-biphenylene) spacers. In each case the two N,O-donor units are too far apart to chelate to a single metal ion. Complexes of both ligands with Co(II), Cu(II) and Zn(II) were prepared and structurally characterised; in all cases the complexes are dinuclear double helicates M2L2, with each four-coordinate metal ion bound by a chelating unit from each of the two ligands in the complex. For Co(II) and Zn(II) the two M(NO) planes at each metal are close to perpendicular, indicative of a geometry which may be described as approximately distorted tetrahedral; for the Cu(II) complexes the angle between the two Cu(NO) planes is less, indicative of a distortion towards a more planar coordination geometry.  相似文献   

5.
Synthesis and single crystal X-ray structures of the first paramagnetic transition metal complexes containing chiral ethylenedithio-tetrathiafulvalene-oxazoline (EDT-TTF-OX) 1a-c and ethylenedithio-tetrathiafulvalene-thiomethyloxazoline 2 (EDT-TTF-(SMe)OX) ligands based on copper (II) and cobalt (II) are described. The racemic [EDT-TTF-OX][Cu(hfac)2] complex 3a crystallizes in the triclinic centrosymmetric space group , whereas the enantiopure counterparts 3b-c crystallize in the triclinic non-centrosymmetric space group P1. Cu(II) adopts a distorted square pyramidal coordination geometry, a much weaker Cu?STTF interaction also being identified. The same coordination pattern around Cu(II) is observed in the complex [(rac)-EDT-TTF-(SMe)OX][Cu(hfac)2] (4) in spite of the bidentate nature of the redox active ligand. DFT theoretical calculations afforded two equilibrium configurations for a corresponding model complex, in which the metal centre establishes secondary coordination either with one STTF or with the SMe group. The same ligand coordinates the cobalt (II) to afford the octahedral complex [(rac)-EDT-TTF-(SMe)OX][Co(hfac)2] (5). In all these novel complexes, the paramagnetic centres are structurally and magnetically isolated. Cyclic voltammetry measurements show the stability of the radical cation species.  相似文献   

6.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

7.
Spectroscopy (UV-Vis, 1H NMR, ESR) and electrochemistry revealed details of the structure of the Cu(II)-TRH (pyroglutamyl-histidyl-prolyl amide) complex. The 1H NMR spectrum of TRH has been assigned. NMR spectra of TRH in the presence of Cu(II) showed that Cu(II) initially binds TRH through the imidazole. TRH analogs, pGlu-His-Pro-OH, pGlu-(1-Me)His-Pro-amide, pGlu-His-(3,4-dehydro)Pro-amide, pGlu-His-OH, pGlu-Glu-Pro-amide, and pGlu-Phe-Pro-amide provided comparison data. The stoichiometry of the major Cu(II)-TRH complex at pH 7.45 and greater is 1:1. The conditional formation constant (in pH 9.84 borate with 12.0 mM tartrate) for the formation of the complex is above 105 M−1. The coordination starts from the 1-N of the histidyl imidazole, and then proceeds along the backbone involving the deprotonated pGlu-His amide and the lactam nitrogen of the pGlu residue. The fourth equatorial donor is an oxygen donor from water. Hydroxide begins to replace the water before the pH reaches 11. Minority species with stoichiometry of Cu-(TRH)x (x = 2-4) probably exist at pH lower than 8.0. In non-buffered aqueous solutions, TRH acts as a monodentate ligand and forms a Cu(II)-(TRH)4 complex through imidazole nitrogens. All the His-containing analogs behave like TRH in terms of the above properties.  相似文献   

8.
A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O–HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (?H) and entropy change (?S) were calculated to be ?458.67 kJ mol?1 and ?1,339 J mol?1 K?1 respectively. According to the van’t Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.  相似文献   

9.
In situ reaction of the aminobenzoic acids 2-aminobenzoic acid and 3,5-diaminobenzoic acid with salicylaldehyde provide easy access to the ligands 2-[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L1) and 3,5-bis[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L2). Addition of a Fe(II) or Cu(II) salt to the solution of the ligand yields the corresponding Fe and Cu complexes. The species synthesized have been structurally characterized by single-crystal X-ray diffraction. The Fe(II) complex [Fe(L1)(MeOH)3] (1) crystallizes in the triclinic space group . The Cu(II) complex [Cu(L1)] (2) is a one-dimensional chain and crystallizes in the monoclinic space group P21. The Cu(II) complex [Et3NH]2[Cu2(L2)2] (3) crystallizes in the monoclinic space group P21/n. The magnetic properties of 1, 2 and 3 have been studied, showing that the Cu(II) ions of 2 and 3 are ferromagnetically coupled. Complexes 1 and 3 have strong potential as metal-bearing building blocks for the synthesis of metal-organic frameworks.  相似文献   

10.
《Inorganica chimica acta》2006,359(4):1200-1206
A new Cu(II) complex of CuL(ClO4)2 (here, L = N,N,N′,N′-tetrakis[(2-benzimidazolyl)methyl]-1,3-diaminopropane) has been synthesized and characterized by elemental analyses, UV–Vis, FT-IR, cyclic voltammogram and X-ray single crystal diffraction. The Cu(II) environmental in complex is distorted octahedral. π–π stacking interactions stabilize the crystal packing together with the hydrogen-bonding interactions. The interaction of the complex with DNA has been investigated using equilibrium dialysis, UV spectra, fluorescent spectra, and gel electrophoresis. The results show that the Cu(II) complex can electrostatically bind to the phosphate group of DNA backbone, and partially intercalate into the double helix of DNA because of the bulky structure of the complex and the planarity of the benzimidazole rings.  相似文献   

11.
《Inorganica chimica acta》1988,152(3):145-149
Coordination of copper(II) ions by daunomycin and 5-iminodaunomycin has been studied by electron spin resonance spectroscopy, at various values of pH and r, the anthracycline-to-Cu(II) molar ratio. At r = 1–5, polymeric complexes are formed in the case of daunomycin. At r = 5, a mononuclear complex is predominant and at r = 10, this is the only one formed with the 63Cu and 65Cu hyperfine interaction being clearly defined in the g region (g = 2.26, 63A = 175; 65A = 190 G). For 5-iminodaunomycin both chelation sites are involved in the coordination and a polymeric structure (in which exchange interactions between Cu(II) centers operate) is stable in the range r = 1–3. At r = 3, the triplet state of a dinuclear Cu(II) complex is observed and 5-iminodaunomycin behaves as both a bridging and a terminal ligand. For r = 5–10, the dinuclear complex coexists with the mononuclear one. In the presence of mononucleotides dGMP, dAMP, dCMP and thymidine, no ternary complex such as mononucleotide/Cu(II)/anthracycline was observed.  相似文献   

12.
A number of di-Cu(II) complexes of the new tetraimine macrocyclic ligand derived from the Schiff base [2 + 2] condensation of 2,5-diformylfuran with 3-oxa-pentane-1,5-diamine have been prepared by methods which employ the heavier alkaline earth metal ions as templates followed by transmetallation. The complexes have been characterised by spectroscopic and other physical methods. Several of the di-Cu(I) complexes react reversibly with CO in solution and irreversibly with O2 in a 4:1 Cu:O2 stoicheiometry. Depending on conditions the oxidation product may be a dinuclear Cu(II) complex of the macrocycle or a mononuclear Cu(II) complex of a new ring-opened ligand. The single crystal X-ray structure of the latter complex has been determined.[CuL](BPh4)2 is monoclinic, space group C2/c with a=20.12(1), b=14.48(1), c=22.37(2) Å, β=110.1(1)°, Z=4. 1389 Independent reflections above background were measured on a diffractometer and the structure refined to R=0.108. The cation has imposed C2 symmetry. The copper atom is bonded to four nitrogen atoms in the ‘outer’ compartment of the ligand with unique CuN distances of 2.050(17) and 1.977(17) Å. The geometry of the copper atom is intermediate between square planar and tetrahedral with an angle of 39.7° between two CuN2 planes. Molecular mechanics calculations show that this distortion is due to steric effects.  相似文献   

13.
The preparation, spectral properties, and crystal structure of a mononuclear copper(II) complex of acetylsalicylate and pyridine are reported. The complex exists as bis(acetylsalicylato)bis(pyridine)copper(II) both in the solid state and in chloroform solution. The crystal is monoclinic, space group P21/n, with a = 17.823(5), b = 10.903(4), c = 6.598(2) Å, β = 95.74(2)°. The final refinement used 1472 observed reflections and gave an R of 0.046. The copper atom is surrounded by four atoms in a trans square planar arrangement with two short CuO distances of 1.949(3) Å and two CuN distances of 2.003(4) Å. Two longer CuO distances of 2.623(3) Å are made with the remaining oxygen atoms of the aspirin carboxylate groups.  相似文献   

14.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

15.
Two novel copper (II) complexes [Cu(TFP)(Gly)Cl] ⋅ 2H2O complex ( 1 ) and [Cu(TFP)(His)Cl] ⋅ 2H2O complex ( 2 ) are synthesized, where TFP stands for trifluropromazine, Gly. represents glycine, and His. is histidine. Chemical composition, IR, mass spectra, and magnetic susceptibility tests are performed. Complex binding with macromolecules was investigated using UV-vis, viscosity, gel electrophoresis, and fluorescence quenching. Fluorescence spectroscopy revealed that each complex could replace ethidium bromide (EB). These complexes exhibit grooved, non-covalent, and electrostatic interactions with CT-DNA. Spectroscopy analysis of the BSA interaction showed that complexes bind to protein (Kb values for ( 1 ) is 5.89×103 M−1 and for ( 2 ) is 9.08×103 M−1) more strongly than CT-DNA (Kb values for ( 1 ) is 5.43×103 M−1 and for ( 2 ) is 7.17×103 M−1). Molecular docking analysis and spectral absorption measurements showed high agreement. Antimicrobial, antioxidant, and anti-inflammatory properties were tested in vitro. The druggability of complex ( 2 ) should be tested in vivo as it is more biologically active.  相似文献   

16.
Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH−1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI)2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH attack.  相似文献   

17.
A kinetic study of the oxidation of (hydroxyethyl)ferrocene (HEF) by [2-pyridylmethylbis(2-ethyl-thioethyl)ainine]copper(II) (Cu(pmas)2+) is reported, with the objective of documenting the influence of the two thioether sulfur ligands on the electron transfer rate. Both reactants exhibit a first-order dependence at pH 6, I = 0.1 M(NaNO3); k(25°C) = 1.3 × 104M−1sec−1, ΔH3 = 10.1 kcal/mole, ΔS3 = −6 eu. The apparent Cu(pmas)2+/+ self-exchange electron transfer rate constant calculated from this reaction on the basis of relative Marcus theory (4.7 × 101M−1 sec−1) agrees well with previous findings on ferrocytochrome c, Fe(CN)64−, and Ru(NH3)5py2+ oxidations. Spectrophotometric titrations of Cu(pmas)2+ and Cu(tmpa)2+ (tmpa = tris(2-pyridylmethyl)amine) with azide ion showed that both Cu(pmas)N3)+ (Kf1 = 3.1 × 103M−1) and Cu(pmas)(N3)2 (Kf2 = 3.5 × 101M−1) but Cu(tmpa)(N3)+ (Kf = 6.6 × 102M−1) are formed up to 0.15 M N3 (25°C, pH 6, I = 0.2 M), suggesting that a thioether sulfur atom is displaced in the uptake of a second N3 ion by Cu(pmas)(N3)+. The effect of thioether sulfur displacement by azide ion on the HEF-Cu(pmas)2+ reaction rate may be understood entirely through the tendency of N3 to shift the position of the redox equilibrium towards the reactant side, without invoking any special role for the sulfur ligand in promoting electron transfer reactivity.  相似文献   

18.
A tetranuclear copper(II) complex [Cu4L2(CH3COO)2(OH)2]·6H2O, in which L stands for the dianion of N-(3-carboxylsalicylidene)-4-(2-iminoethyl)morpholine, was synthesized and characterized by elemental analysis, IR, UV-Vis, TGA and X-ray single crystal diffraction. The crystal structure shows that the coordination unit is centrosymmetric with all the Cu(II) ions in square pyramidal coordination geometry. The coordination unit consists of two equivalent parts [Cu2L(CH3COO)(OH)], each containing two Cu(II) ions, a tetradentate N2O2 Schiff base dianion L2−, a CH3COO, and a OH anion. In [Cu2L(CH3COO)(OH)], the six coordination atoms (N2O4) are nearly coplanar, with Cu(1) and Cu(2) enchased in between; the phenolate oxygen and the OH oxygen as bridging atoms bind the two Cu(II) ions in close proximity; both O4 around Cu(1) and N2O2 around Cu(2) form the basal plane of the coordination square pyramids. The two parts are connected by sharing two μ3-OH oxygens and two μ2-CH3COO oxygens from each other, forming four edge-sharing coordination square pyramids around the four Cu(II) ions. A 3D network is formed through hydrogen bonding along a and c axis, and π-π interaction along b axis.  相似文献   

19.
Copper(II) N-salicylidene-(S)-alaninate trihydrate reacting as the S-enantiomeric parent compound with KOCN in hot diluted methanol yielded by slow crystallisation from the cooled reaction mixture (in the course of 1 day) the racemic product K[Cu{sal-(RS)-ala}(NCO)]. The parameters of the axial type EPR spectrum in X-band region and the LF band position in the electronic spectrum are typical of an axially distorted square pyramidal coordination of the Cu(II) atom in this complex. The spectral properties of the complex cuprate prepared and its basal crystallographic data are consistent with those of the earlier studied15 K2[Cu2{sal-(RS)-ala}2(μ-NCO)2] synthetized by using [Cu{sal-(RS)-ala}(H2O)].H2O as the racemic parent complex in the reaction mixture with KOCN.  相似文献   

20.
CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log KCuL in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log KCuHSA 16.2. Some of the complexes are also able to interfere in the α-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L → Cu(II) donation, and Cu(II) → L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号