首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electrospray mass spectrometry (ESMS) has been used to investigate the relative ligand properties of the triphenylpnictogen ligands EPh3 (E=P, As, Sb and Bi) towards silver(I) and copper(I) ions. It is found that the preferred species formed increase in coordination number from two for PPh3 in [Ag(PPh3)2]+ to four for SbPh3 in [Ag(SbPh3)4]+, consistent with the decreasing donor ligand ability and increasing metal –E bond length in the series PPh3–AsPh3–SbPh3. With BiPh3, the spectra were complex, suggesting considerable decomposition. These studies also suggest that silver(I) and copper(I) ions will have widespread utility in the characterisation of tertiary stibine ligands, as has been described previously for phosphines and arsines. These studies demonstrate the power of the ESMS technique in determining the donor properties of a related series of ligands, and this information is of significance in coordination chemistry.  相似文献   

3.
4.
The interaction of the 1,N6-etheno derivatives of poly(rA) (poly(epsilon rA] with poly(rU) has been studied by absorption and fluorescence spectroscopy. The stoichiometry of the interaction is found to be 1 epsilon A:1 rU and 1 epsilon A:2 rU as well as in the case of poly(rA)-poly(rU) interaction. The fluorescence properties, including the intensity and polarization of fluorescence, respond to the conformational transition of poly(epsilon rA)-poly(rU) complexes. The introduction of epsilon A groups into poly(rA) results in a marked decrease in the melting temperature, suggesting that epsilon A may destabilize the helical structure. The three-exponential decay law obtained with poly(epsilon rA)-poly(rU) complexes indicates the existence of at least three different stacked conformational states.  相似文献   

5.
Despite the many enzymes that use 2-His-1-carboxylate facial triads to bind iron(II), there are few crystallographically characterized synthetic iron(II) complexes of tridentate ligands that bind through two imidazoles and one carboxylate. We report 1H NMR characterization of the equilibrium between one such ligand and aqueous Fe2+. The formation of 1:1 and 2:1 complexes is evident, but the 1:1 complex is never the exclusive compound in solution. This behavior has not been reported previously for N,N,O ligand-iron(II) complexes. The 2:1 ligand/iron complex crystallizes from solution, and it has been completely characterized including an X-ray crystal structure.  相似文献   

6.
微生物氧化As(III)和Sb(III)的研究进展   总被引:3,自引:0,他引:3  
砷(Arsenic,As)和锑(Antimony,Sb)属于同族元素,具有相似的化学性质,是公认的有毒类金属(metalloid),广泛存在于自然界中。随着人类的发展,环境中砷和锑的污染日益严重,类金属污染环境的修复已经刻不容缓。现已表明,自然界中的微生物在砷和锑的生物地球化学循环中发挥着重要的作用,尤其是微生物的氧化作用,可以将毒性较强的亚砷酸盐[Arsenite,As(III)]和亚锑酸盐[Antimonite,Sb(III)]氧化为毒性较低的砷酸盐[Arsenate,As(V)]和锑酸盐[Antimonate,Sb(V)],被认为是一种潜在的类金属污染环境修复方法。本文就国内外对As(III)氧化菌和Sb(III)氧化菌的多样性、As(III)和Sb(III)微生物氧化调控机制和应用的研究进展进行总结,旨在为深入了解和探索微生物介导的砷和锑生物地球化学循环及污染环境的微生物修复提供参考。  相似文献   

7.
A series of 1:1 iron(III) complexes of simple and sterically hindered tridentate 3N donor ligands have been synthesized and studied as functional models for catechol dioxygenases. All of them are of the type [FeLCl3], where L is bis(pyrid-2-yl-methyl)amine (L1), N,N-bis(benzimidazol-2-ylmethyl)amine (L2), N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L3), N,N-dimethyl-N'-(pyrid-2-ylmethyl)-ethylenediamine (L4) and N-phenyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L5). They have been characterised by spectral and electrochemical methods. The X-ray crystal structure of the complex [Fe(L4)Cl3] has been successfully determined. The complex crystallizes in the triclinic space group P1 with a = 7.250(6), b = 8.284(3), c = 12.409(4) angstroms, alpha = 80.84(3) degrees, beta = 86.76(6) degrees, gamma = 72.09(7) degrees and Z = 2. It possesses a distorted octahedral geometry in which the L4 ligand is cis-facially coordinated to iron(III) and the chloride ions occupy the remaining coordination sites. The systematic variation in the ligand donor atom type significantly influences the Lewis acidity of the iron(III) center and hence the binding interaction of the complexes with simple and substituted catechols. The spectroscopic and electrochemical properties of the catecholate complexes generated in situ have been investigated. All the complexes catalyze mainly the oxidative intradiol cleavage of 3,5-di-tert-butylcatechol (H2DBC) in the presence of dioxygen, which is unexpected of the cis-facial coordination of the ligands. The rate of intradiol catechol cleavage reaction depends upon the Lewis acidity of iron(III) center and steric demand and hydrogen-bonding functionalities of the ligands. Interestingly, the electron-sink property of N-phenyl substituent in [Fe(L5)Cl3] complex leads to enhancement in rate of cleavage. All these observations provide support to the substrate activation mechanism proposed for intradiol-cleaving enzymes.  相似文献   

8.
Photolysis of the allenylidene pentacarbonyl chromium complexes [(CO)5CrCCC(R1)R2] (R1=NMe2, NPh2; R2=NMe2, OMe, Ph) in THF in the presence of equimolar amounts of XR3 (XR3=various phosphanes, P(OMe)3, AsPh3, SbPh3) affords cis-allenylidene tetracarbonyl XR3 complexes, cis-[(CO)4(XR3)CrCCC(R1)R2]. When in the photolysis of [(CO)5CrCCC(NMe2)Ph], the phosphanes PR3 (R=C6H4F-p, C6H4Cl-p, OMe) are used in excess (three equivalents) two carbonyl ligands are displaced and the mer-tricarbonyl complexes mer-[(CO)3(PR3)2CrCCC(NMe2)Ph] are formed both PR3 ligands being mutually trans. The structure of the new complexes is established by IR, NMR, and UV-Vis spectroscopy, that of cis-[(CO)4(PPh3)CrCCC(NMe2)Ph] additionally by an X-ray structural analysis. As indicated by the spectroscopic data of the compounds, these complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalization of the electron pair at nitrogen bonded to the Cγ atom of the allenylidene ligand towards the metal center. The relative contribution of the allenylidene and zwitterionic alkynyl resonance forms is influenced by XR3. Increasing the donor properties of XR3 favors the allenylidene resonance form.  相似文献   

9.
We have previously reported the scanning tunnelling microscopy (STM) imaging under buffer of the heme monooxygenase cytochrome P450(cam) from Pseudomonas putida [Faraday Discuss. 116 (2000) 1]. We describe here the adsorption and STM imaging under buffer of complexes of a mutant of cytochrome P450(cam), K344C, and wild-type putidaredoxin (Pdx) on gold(111). The images of Pdx on its own on gold(111) are not uniform, presumably due to multiple orientations of protein adsorption because of the presence of five or more cysteines on the protein surface. STM imaging of a 1:1 mixture of P450(cam)-K344C/Pdx showed a regular array of pairs of different-sized proteins 20-25 A apart arranged in rows across the gold(111) surface which we attribute to the P450(cam)/Pdx complex. The images of the pairs are more regular than those of Pdx on its own, probably as a result of complex formation with P450(cam) partly overcoming the heterogeneity of Pdx adsorption. As far as we are aware this is the first report of STM imaging of a protein/protein complex, and the first direct observation of P450(cam)/Pdx complex formation which is a key step in the catalytic cycle of P450(cam) catalysis. The redox centers of the two proteins are ca. 20 A apart, too far for rapid intracomplex electron transfer. Whether the observed complex is competent for electron transfer or physiologically relevant is not known, and further work is in progress to elucidate the protein-protein interaction.  相似文献   

10.
The complex formation of Co(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of calorimetric and spectroscopic methods. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2′′-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA).These ligands are characterized by a systematic modification of the donor groups in order to study how their structure is related to the stability of the complexes formed and to their ability to bind oxygen. A comparison with thermodynamic data for similar Cd(II) systems as well as with data referred to linear tetra-amines in DMSO is also made. The solvent effect on the nature and stability of the species formed is discussed. DFT calculations are carried out to explain the trend in thermodynamic parameters for Me6TREN. Only Co(TREN)2+ is able to bind oxygen and two successive species (μ-superoxo and μ-peroxo) are formed. The kinetics of oxygen uptake by Co(TREN)2+ is found to be less solvent-dependent than other Co(II)-polyamine complexes when the formation of the mononuclear μ-superoxo complex is considered.  相似文献   

11.
12.
A calorimetric study of the thermodynamic parameters for the binding of adenosine, AMP, ADP, and ATP to L-glutamate dehydrogenase shows that the variation of deltaG0 of binding is quite small and is correlated qualitatively both with the effectiveness of these ribonucleotides as activators of the L-glutamate dehydrogenase reaction and with size (for the first three). Much larger variations are observed for the deltaH0 of binding largely compensated by changes in deltaS0, with a zig-zag dependence on the number of phosphate groups. For comparison, the binding parameters are also obtained for the deoxyribose analogs of these compounds as well as cyclic adenosine 3':5'-monophosphate and purine riboside. Salt concentration and buffer composition were shown to affect mainly the entropy changes for ADP binding; and the deltaCp values for binding of AMP and ADP to the enzyme are quite small. It is suggested that the general area of the enzyme surface which includes the binding sites for ADP and its analogs contains a number of functional groups, each capable of an energetically small interaction with some group on one or more of the ligands, but so located that even the largest ligand cannot interact with all of them simultaneously. Each ligand minimizes the free energy of the system by selecting the best pattern of such individual interactions permitted by its geometry. Such a pattern of microheterogeneity of ligand-protein interactions may be a major source of the known specificity of binding in biological systems.  相似文献   

13.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

14.
Complex formation and redox reactions between copper (II) ion and D-penicillamine were studied in detail as functions of the metal/-ligand ratio and the concentration of halide ions. It was established that a copper (I)- D-penicillamine polymeric complex of amphoteric character is formed when excess D-penicillamine is present. When the D-penicillamine/copper (II) ratio = 1.45 in the starting reaction mixture, a mixed valence complex with an intense red-violet color is formed. The formation of this compound, which contains 44% copper (II) ion, is greatly influenced by the experimental conditions, primarily by the concentration of halide ions. The main chemical and physical characteristics of the mixed valence complex were determined via magnetic and spectroscopic measurements. It was further established that a very intense blue complex is formed when the D-penicillamine/copper (II) ratio = 2 and halide ions are present. On the basis of the nature of the products formed under various conditions it was concluded that the copper (II)-D-penicillamine system may serve as a good model for studying the binding sites of copper-containing proteins.  相似文献   

15.
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantrone and mutagens ethidium bromide and proflavin have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the hairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.  相似文献   

16.
Kostiukov VV 《Biofizika》2011,56(1):35-47
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.  相似文献   

17.
18.
Reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-phenol, HLsal, 1, [where H represents the dissociable protons upon complexation and aryl groups of HLsal are phenyl for HL1sal, p-methylphenyl for HL2sal, and p-chlorophenyl for HL3sal], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded complexes of composition [(Lsal)Ru(CO)(Cl)(PPh3)] and (Lsal)2Ru where the N,N,O donor tridentate (Lsal) ligands coordinated the metal centre facially and meridionally, respectively. Stepwise formation of [(Lsal)2Ru] has been ascertained. Reaction of 1-{[2-(arylazo)phenyl]iminomethyl}-2-napthol, HLnap, 2, [where H represents the dissociable protons upon complexation and aryl groups of HLnap are phenyl for HL1nap, p-methylphenyl for HL2nap, and p-chlorophenyl for HL3nap], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded exclusively the complexes of composition [(Lnap)Ru(CO)(Cl)(PPh3)], where N,N,O donor tridentate (Lnap) was facially coordinated. The ligand 1-{[2-(phenylazo)phenyl]aminomethyl}-2-phenol, HL, 3, was prepared by reducing the aldimine function of HL1sal. Reaction of HL with Ru(PPh3)3Cl2 afforded new azosalen complex of Ru(III) in concert with regiospecific oxygenation of phenyl ring of HL. All the new ligands were characterized by analytical and spectroscopic techniques. The complexes were characterized by analytical and spectroscopic techniques and subsequently confirmed by the determination of X-ray structures of selected complexes.  相似文献   

19.
Pairs of leucine side chains, spaced either (i,i+3) or (i,i+4), are known to stabilize alanine-based peptide helices, Experiments with new peptide sequences confirm that the (i,i+4) pair interaction is markedly stronger than the (i,i+3) pair interaction. This result is not expected from reported Monte Carlo simulations, which predict that the (i,i+3) interaction is slightly stronger. The interaction strength can be predicted from recently reported measurements of buried non-polar surface area, obtained from structures in the Protein Data Bank: the agreement is reasonable for the (i,i+3) LL interaction but underestimates the (i,i+4) LL interaction. Solvation of peptide groups in the helix backbone may contribute to the different strengths of the two LL pair interactions because different chi(1) leucine rotamers are used and the (i,i+3) pair shields two peptide groups whereas the (i,i+4) pair shields only one. A rough estimate of the backbone solvation effect, based on the difference between the helix propensities of leucine and alanine, agrees with the size of the difference between the (i,i+3) and (i,i+4) leucine pair interactions.  相似文献   

20.
Formation of the binary complex between the reduced coenzyme nicotinamide adenine dinucleotide (NADH) and pig skeletal muscle lactate dehydrogenase (LDH, EC 1.1.1.27) has been investigated by calorimetric and equilibrium dialysis techniques in 0.2 M potassium phosphate buffer (pH 7.0) at various temperatures. Analysis of thermal titration curves at two temperatures (25 and 31.5 degrees) shows that the experimental enthalpy data can be rationalized assuming four independent and equivalent binding sites for the tetrameric enzyme. Binary complex formation is characterized by a negative temperature coefficient, delta cp, of the binding enthalpy, which amounts to -1300 plus or minus 53 cal/(deg mol of LDH) in the temperature range of 5-31.5 degrees. Despite the slightly smaller standard deviation resulting when polynomial regression analysis of the second degree is applied to the temperature dependence of the enthalpy values, binding enthalpies seem to be adequately represented in the temperature range studied by the equation delta H = -1.3T + 2.3, kcal/mol of LDH, T referring to the temperature in degrees C. By combination of the results obtained from equilibrium dialysis and calorimetric studies a set of apparent thermodynamic parameters for binding of NADH to LDH in 0.2 M potassium phosphate buffer at pH 7 has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号