首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1989,156(1):107-112
The reaction of 5,14-dihydro-7,16-diethyl-(E)- or -(Z)-dipyrido [b, i] [ 1,4,8,11 ] tetraazacyclotetradecine with vanadium(III) chloride led to the corresponding oxovanadium(IV) complexes, while reaction with tetracarbonylbis(piperidine)molybdenum(O) gave the corresponding dioxomolybdenum(VI) complexes. The oxovanadium(IV) complexes showed mass spectra with prominent parent peaks in the El mode. On the other hand the FD mass spectra for the dioxomolybdenum(VI) complexes exhibited the expected parent and parent-O peaks. A VO stretching band was observed at ca. 970 cm−1 for the oxovanadium(IV) complexes. The dioxomolybdenum(VI) complexes had strong bands at 855 and 885 cm−1 in the NaCl region, which are attributable to the MoO symmetric and asymmetric stretching modes. The absorption bands observed above 20 000 cm−1 range were attributed to the CT and π→π* transitions. Judging from the spin Hamiltonian parameters, the oxovanadium(IV) complexes are of square-planar types with an unpaired electron in the dxy orbital. The downfield shifts for the dioxomolybdenum(VI) complexes are much larger in magnitude than those observed for the corresponding oxochromium(IV) complexes. This is primarily dependent on the fact that the magnitude of the positive charge fed by molybdenum(VI) is greater than that by chromium(IV).  相似文献   

2.
Oxovanadium(IV) and dioxouranium(VI) complexes with thiocarbohydrazones have been prepared in an ethanolic medium and characterised by elemental analysis and molecular weight determination. They have 1:1 stoichiometry. The IR observations suggest that the ligands have coordinated through azomethine nitrogen atoms and reacted through hydroxy groups. The v(MN) and v(MO) vibrations have been assigned. The PMR spectral information supports the IR inference. The oxovanadium(IV) complexes show magnetic moments in the range of 1.74–1.94 B.M. The electronic spectra have been interpreted in the light of the BG model. Various NSH parameters have been calculated. The ESR spectra also render support for the spectral information. On the basis of this information it is suggested that oxovanadium(IV) complexes exhibit coordination number five and dioxouranium coordination number six.  相似文献   

3.
In a systematic effort to identify and develop effective anticancer agents, four oxovanadium(IV) complexes with 1,10-phenanthroline (Phen) or 4,7-dimethyl-1,10-phenanthroline (Me2-Phen) as ligand(s) were synthesized and characterized. Among the four oxovanadium(IV) complexes synthesized, the crystal structure of the bis(phenanthroline)oxovanadium(IV) complex bis(1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Phen)2], compound 1) has been determined. Compound 1 crystallized in the space group P2(1)/n with unit cell parameters a = 14.2125(17) A, b = 10.8628(13) A, c = 20.143(2) A, alpha = 90 degrees, beta = 102.569(2) degrees, gamma = 90 degrees, V = 3035.3(6) A3, and Z = 4. The refinement of compound 1 by full-matrix least-squares techniques gave an R factor of 0.0785 for 4356 independent reflections. The structure contains two enantiomorphous molecules, lambda and delta, which are related by an inversion center. Compound 1 exhibited 3.5-fold more potent cytotoxic activity against NALM-6 human leukemia cells than the mono(phenanthroline)oxovanadium(IV) complex (diaqua)(1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Phen)(H2O)2], compound 2) (IC50 values: 0.97+/-0.10 microM versus 3.40+/-0.20 microM: P=0.0004). Methyl substitution in the phenanthroline ligand enhanced the anti-leukemic activity of the mono(phenanthroline)oxovanadium(IV) complex 4.4-fold (IC50 values: 0.78+/-0.10 microM, compound 4, versus 3.40+/-0.20 microM, compound 2; P=0.0003) and the anti-leukemic activity of the bis(phenanthroline)oxovanadium(IV) complex 5.7-fold (IC50 values: 0.17+/-0.02 microM, compound 3, versus 0.97+/-0.10 microM, compound 1; P=0.001). The leading oxovanadium compound, bis(4,7-dimethyl-1,10-phenanthroline)sulfatooxovanadium(IV) ([VO(SO4)(Me2-Phen)2], compound 3) triggered the production of reactive oxygen species (ROS) in human leukemia cells, caused G1-arrest and inhibited clonogenic growth at nanomolar concentrations.  相似文献   

4.
Among the previously studied organic vanadium derivatives showing an anti-diabetic action, we investigated a new complex, bis(2,2'-bipyridine)oxovanadium(IV) sulphate. We tested its ability to normalise parameters previously described for streptozotocin (STZ)-diabetes, such as lower yields of Golgi-rich membrane fraction isolation, decreased activity of Golgi membrane marker enzyme - galactosyltransferase (GalT) - and altered morphology of rat liver Golgi complexes. Oral application as a drinking solution of 1.8 mmol bis(2,2'-bipyridine)oxovanadium(IV) (dissolved in 0.09 M NaCl) caused a similar dispersion of GalT activities in both vanadium treated groups, control and diabetic. Very low activities of the enzyme (characteristic for untreated diabetes) we found only in approximately 35 % of the STZ-diabetic rats treated with the new vanadium compound. The morphology of liver Golgi complexes in diabetic rats treated with bis(2,2'-bipyridine)oxovanadium(IV) sulphate was improved, which manifested itself in the reappearance of vacuoles with VLDL and coated and uncoated secretory vesicles. In view of biochemical and morphological parameters of normalised diabetic rat liver Golgi apparatus, the new vanadium complex was more effective than bis(oxalato)oxovanadium(IV) or bis(kojato)oxovanadium(IV), but in our experimental model, the best anti-diabetic, orally applied drug was the bis(maltolato)oxovanadium(IV) previously investigated.  相似文献   

5.
Recently, we have found that some oxovanadium(IV) complexes are potent insulin-mimetic compounds for treating both type I and type II diabetic animals. However, the functional mechanism of oxovanadium(IV) complexes is not fully understood. In this report, we have shown that oxovanadium(IV)-picolinate complexes such as VO(pa)(2), VO(3mpa)(2), and VO(6mpa)(2) act on the insulin signaling pathway in 3T3-L1 adipocytes. Among them, VO(3mpa)(2) was found to be the highest potent activator in inducing not only the phosphotyrosine levels of both IRbeta and IRS but also the activation of downstream kinases in the insulin receptor, such as Akt and GSK3beta, which in turn translocated the insulin-dependent GLUT4 to the plasma membrane. Then, we examined whether or not oxovanadium(IV)-picolinates exhibit the hypoglycemic activity in STZ-induced diabetic mice, and found that VO(3mpa)(2) is more effective than the others in improving the hyperglycemia of the animals. Our present data indicate that both activation of insulin signaling pathway, which follows the GLUT4 translocation to the plasma membrane, and enhancement of glucose utilization by oxovanadium(IV) complexes cause the hypoglycemic effect in diabetic animals.  相似文献   

6.
Five-coordinated oxovanadium(IV) complexes with ciprofloxacin and various uninegative bidentate amino acids have been prepared. The structure of complexes has been investigated using spectral, physicochemical, mass spectroscopy, and elemental analyses. The antimicrobial activities (MIC) of the complexes, ligands, metal salt, and some standard drugs have been evaluated using the doubling dilution technique against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens (gram-positive), and Pseudomonas aeruginosa, and Escherichia coli (gram-negative) bacteria. The result shows the significant increase in the antibacterial activity of the ligand, metal, and ciprofloxacin on complexation. The interaction of the complexes with pBR322 DNA has been investigated using spectroscopic, gel electrophoresis, and viscometric techniques. This shows that the complexes can bind to pBR322 DNA by the intercalative mode. The superoxide dismutase-like activity of the complexes has been determined.  相似文献   

7.
The antidiabetic effect of vanadium is a widely accepted phenomenon; some oxovanadium(IV) complexes have been found to normalize high blood glucose levels in both type 1 and type 2 diabetic animals. In light of the future clinical use of these complexes, the relationship among their chemical structures, physicochemical properties, metallokinetics, and antidiabetic activities must be closely investigated. Recently, we found that among bis(3-hydroxypyronato)oxovanadium(IV) [VO(3hp)2] related complexes, bis(allixinato)oxovanadium(IV) [VO(alx)2] exhibits a relatively strong hypoglycemic effect in diabetic animals. Next, we examined its metallokinetics in the blood of rats that received five VO(3hp)2-related complexes by the blood circulation monitoring–electron paramagnetic resonance method. The metallokinetic parameters were obtained from the blood clearance curves based on a two-compartment model; most parameters, such as area under the concentration curve and mean residence time, correlated significantly with the in vitro insulinomimetic activity in terms of 1/IC50 (IC50 is the 50% inhibitory concentration of the complex required for the release of free fatty acids in adipocytes) and the lipophilicity of the complex (log P com). The oxovanadium(IV) concentration was significantly higher and the species resided longer in the blood of rats that received VO(alx)2 than in the blood of rats that received VO(3hp)2 or bis(kojato)oxovanadium(IV); VO(alx)2 also exhibited higher log P com and 1/IC50 values. On the basis of these results, we propose that the introduction of lipophilic groups at the C2 and C6 positions of the 3hp ligand is an effective method to enhance the hypoglycemic effect of the complexes, as supported by the observed in vivo exposure and residence in the blood.  相似文献   

8.
The increasing interest in vanadium coordination chemistry is based on its well-established chemical and biological functions. A beta-diketonato complex of oxovanadium(IV) is known to be having numerous catalytic applications and also exhibits promising insulin mimetic properties. In continuation of our structure activity relationship studies of metal complexes, we report herein the synthesis and characterization of the vanadium complexes of beta-diketonato ligand system with systematic variations of electronic and steric factors. Two complexes, VO(tmh)(2) (tmh = 2,2,6,6,-tetramethyl-3,5-heptanedione), and VO(hd)(2) (hd = 3,5-heptanedione) were synthesized and characterized by using different spectroscopic techniques. Elemental and mass spectral analysis supports the presence of two beta-diketonato ligands per VO(2+) unit. UV-Vis spectra in different solvents indicate coordination of coordinating solvent molecules at sixth position resulting in red shift of the band I transition. NMR and IR spectra reveal binding of coordinating solvent molecule at vacant sixth position trans to oxo group without releasing beta-diketonato ligands. Enzyme inhibition studies of these and other related oxovanadium(IV) complexes with beta-diketonato ligand system are conducted with snake venom phosphodiesterase I (SPVDE). All of these complexes showed significant inhibitory potential and were found to be non-competitive inhibitors against this enzyme.  相似文献   

9.
Oxovanadium(IV) tetraaza complexes of [14]aneN4: 1,5,8,12-tetraaza-2,9-dioxo-4,11-diphenylcyclotetradecane; [16]aneN4: 1,5,9,13-tetraaza-2,10-dioxo-4,12-diphenylcyclohexadecane; Bzo2[14]aneN4: dibenzo-1,5,8,12-tetraaza-2,9-dioxo-4,11-diphenylcyclotetradecane and Bzo2[16]aneN4: dibenzo-1,5,9,13-tetraaza-2,10-dioxo-4,12-diphenylcyclohexadecane have been encapsulated in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)VO(IV)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); [VO(N-N)2]2+-NaY; in the nanopores of the zeolite-Y and (ii) in situ condensation of the oxovanadium(IV) precursor complex with ethylcinnamate. The new host-guest nanocatalysts were characterized by several techniques: chemical analysis and spectroscopic methods (FT-infrared (FT-IR), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), nitrogen adsorption and diffuse reflectance spectra (DRS)) technique. The analytical data indicated a composition corresponding to the mononuclear complex of tetraaza ligand. The characterization data showed the absence of extraneous complexes, retention of zeolite crystalline structure and encapsulation in the nanopores. Liquid-phase selective hydroxylation of phenol with H2O2 to a mixture of catechol and hydroquinone in CH3CN have been reported using oxovanadium(IV) tetraaza complexes encapsulated in zeolite-Y as catalysts. All these catalysts are more selective toward catechol formation.  相似文献   

10.
In this brief review the most recent studies and the most relevant aspects of the complexes generated by interaction of carbohydrates and related molecules with the oxovanadium(IV) cation, VO2+, are presented and discussed. The survey includes complexes of mono-, di- and polysaccharides, and of other molecules related to simple sugars. First studies with conduritols and related molecules are also described. Moreover, complexes of ascorbic and quinic acids and of some peculiar flavonoids are also included. Some comments on the general physicochemical properties of these complexes are made and their biological activities and effects are also briefly discussed.  相似文献   

11.
The interaction of the first-generation quinolone antibacterial drug oxolinic acid (Hoxo) with the dioxomolybdenum(VI) and dioxouranim(VI) ions leads to the formation of the neutral mononuclear complexes MoO2(oxo)2 and UO2(oxo)2, respectively. The structure of the complexes has been characterized physicochemically and spectroscopically. The lowest energy model structure of the complexes has been determined with molecular modeling calculations. The antimicrobial activity of the complexes has been evaluated against three different microorganisms. The interaction of the complexes with calf-thymus DNA has been investigated with electronic and circular dichroism spectroscopies.  相似文献   

12.
Spectroscopic, enzyme-inhibition, and free-radical scavenging properties of a series of hydrazide ligands and their vanadium(IV) complexes have been investigated. Analytical and spectral data indicate the presence of a dimeric unit with two oxovanadium(IV) ions (VO2+) coordinated with two hydrazide ligands along with two water molecules. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. Binding of the coordinating solvent such as DMSO is indicated at the 6th position of vanadium in the dimeric unit followed by conversion to a monomeric intermediate species, [VOL(DMSO)3]1+ (L = hydrazide ligand). The free hydrazide ligands are inactive against snake venom phosphodiesterase I (SVPD), whereas oxovanadium(IV) complexes of these ligands show varying degrees of inhibition and are found to be non-competitive inhibitors. The superoxide and nitric oxide radical scavenging properties have been determined. Hydrazide ligands are inactive against these free radicals, whereas their V(IV) complexes show varying degrees of inhibition. Structure–activity relationship studies indicate that the electronic and/or steric factors that change the geometry of the complexes play an important role in their inhibitory potential against SVPD and free radicals.  相似文献   

13.
Pentadentate Schiff-base complexes of oxovanadium(IV), the ligands of which were derived from salicylaldehyde derivatives with a variety of substituents and two kinds of amines (2,2-bis(aminoethyl)amine and 3,3-bis(aminopropyl)amine), were prepared, and their coordination geometries in the solid state were determined by X-ray diffraction and IR measurements and those in CH2Cl2 by EPR measurements. They were found to retain distorted octahedral coordination in the solid state. They showed the structural change depending on the type of the substituent. The complexes which reacted with tert-butylhydroperoxide converted methyl phenyl sulfide to the corresponding sulfoxide at lower rates of reaction than tridentate N-salicylidene-2-aminoethanolato oxovanadium(IV) ([VO(salae)]) and tetradentate (N,N-bis(salicylidene)ethylenediaminato)oxovanadium(IV) ([VO(salen)]).  相似文献   

14.
The active site of sulfite oxidase has been investigated by X-ray absorption spectroscopy at the molybdenum K-edge at 4 K. We have investigated all three accessible molybdenum oxidation states, Mo(IV), Mo(V), and Mo(VI), allowing comparison with the Mo(V) electron paramagnetic resonance data for the first time. Quantitative analysis of the extended X-ray absorption fine structure indicates that the Mo(VI) oxidation state possesses two terminal oxo (Mo = O) and approximately three thiolate-like (Mo-S-) ligands and is unaffected by changes in pH and chloride concentration. The Mo(IV) and Mo(V) oxidation states, however, each have a single oxo ligand plus one Mo-O- (or Mo-N less than) bond, most probably Mo--OH, and two to three thiolate-like ligands. Both reduced forms appear to gain a single chloride ligand under conditions of low pH and high chloride concentration.  相似文献   

15.
A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, 1H and 13C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.  相似文献   

16.
Oxovanadium (IV) complexes of the cyclic polyols conduritol C (cond) and myo-inositol (inos) of stoichiometry Na(2)[VO(cond)(2)].2H(2)O and Na(2)[VO(inos)(2)].H(2)O were obtained in aqueous alkaline solutions. They were characterized by infrared and UV-Vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation and glucose consumption were tested on osteoblast-like cells in culture. Conduritol C and myo-inositol did not produce any effect on these parameters. Normal and tumoral cell proliferation was inhibited about (ca.40-60%) by the two oxovanadium (IV) complexes in concentrations as low as 100microM. The complexes were also inhibitory on cell differentiation (ca. 70-80%) while they stimulate glucose consumption. Comparisons of these effects with those of the oxovanadium (IV) cation, under the same experimental conditions, were also performed.  相似文献   

17.
The binding of oxovanadium(IV) to simple sugars in neutral or basic aqueous solution, as studied by EPR and electronic absorption spectroscopy, is reported. The complexation is favored in basic media and involves the coordination of the metal ion to couples of adjacent deprotonated hydroxyls of the sugar molecule. However, only the ligands provided with cis couples can adopt this chelating ligand behavior. The ability of the cis hydroxyl couples to yield chelated complexes has been related to the structural rearrangement (decrease of the O-C-C-O torsion angle in the five-membered chelated ring) needed to permit the oxovanadium(IV) coordination by the sugar molecule.  相似文献   

18.
The behaviour of the bis-chelated oxovanadium(IV) complexes formed by acetylacetone (acac) and five of its derivatives was re-examined through a combination of spectroscopic methods in different solvents. It has been found that the complexes are penta-coordinated with a geometry close to the square pyramid and maintain in solution the same structure as in the solid state. The results rule out a cis-trans isomerism of the species VOL2S (L = acac or derivative, S = solvent) in solution. Depending on the coordinating ability of the solvent a sixth molecule can be bound, more or less strongly, to the free axial position of the complexes. The combined application of the electronic absorption and IR spectroscopies allows to establish if the complexes in solution are penta- or hexa-coordinated.  相似文献   

19.
A new vanadyl complex, bis(5-iodopicolinato)oxovanadium(IV), VO(IPA)2, with a VO(N2O2) coordination mode, was prepared by mixing 5-iodopicolinic acid and VOSO4 at pH 5, with the structure characterized by electronic absorption, IR, and EPR spectra. Introduction of the halogen atom on to the ligand enhanced the in vitro insulinomimetic activity (IC50 = 0.45 mM) compared with that of bis(picolinato)oxovanadium(IV) (IC50 = 0.59 mM). The hyperglycemia of streptozotocin-induced insulin-dependent diabetic rats was normalized when VO(IPA)2 was given by daily intraperitoneal injection. The normoglycemic effect continued for more than 14 days after the end of treatment. To understand the insulinomimetic action of VO(IPA)2, the organ distribution of vanadium and the blood disposition of vanadyl species were investigated. In diabetic rats treated with VO(IPA)2, vanadium was distributed in almost all tissues examined, especially in bone, indicating that the action of vanadium is not peripheral. Vanadyl concentrations in the blood of normal rats given VO(IPA)2 remain significantly higher and longer than those given other complexes because of its slower clearance rate. VO(IPA)2 binds with the membrane of erythrocytes, probably owing to its high hydrophobicity in addition to its binding with serum albumin. The longer residence of vanadyl species shows the higher normoglyceric effects of VO(IPA)2 among three complexes with the VO(N2O2) coordination mode. On the basis of these results, VO(IPA)2 is indicated to be a preferred agent to treat insulin-dependent diabetes mellitus in experimental animals.  相似文献   

20.
The Cu(II) complexes of tridentate amino acids and related amines in alkaline solution were studied by EPR spectroscopy. Line shapes, g∥ and A∥ of each amino acid complex were compared with those of the corresponding amine complex. The results indicate that aromatic amino acids, monoaminodicarboxylic amino acids, arginine, methionine, and lysine bind to Cu(II) via the amino and carboxyl α groups. On the other hand cysteine, 2-3-diaminopropionic acid and hydroxy amino acids appear to be coordinated through the α-amino group and the third potentially binding group. Evidence is presented for the formation of mixed complexes in the cases of histidine and 2-4-diaminobutyric acid, whereas a glycine-like complex with apical coordination of the δ-amino groups is proposed for the ornithine-Cu(II) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号